55,357 research outputs found

    Extending the Energy Framework for Network Simulator 3 (ns-3)

    Full text link
    The problem of designing and simulating optimal transmission protocols for energy harvesting wireless networks has recently received considerable attention, thus requiring for an accurate modeling of the energy harvesting process and a consequent redesign of the simulation framework to include it. While the current ns-3 energy framework allows the definition of new energy sources that incorporate the contribution of an energy harvester, the integration of an energy harvester component into an existing energy source is not straightforward using the existing energy framework. In this poster, we propose an extension of the energy framework currently released with ns-3 in order to explicitly introduce the concept of an energy harvester. Starting from the definition of the general interface, we then provide the implementation of two simple models for the energy harvester. In addition, we extend the set of implementations of the current energy framework to include a model for a supercapacitor energy source and a device energy model for the energy consumption of a sensor. Finally, we introduce the concept of an energy predictor, that gathers information from the energy source and harvester and use this information to predict the amount of energy that will be available in the future, and we provide an example implementation. As a result of these efforts, we believe that our contributions to the ns-3 energy framework will provide a useful tool to enhance the quality of simulations of energy-aware wireless networks.Comment: 2 pages, 4 figures. Poster presented at WNS3 2014, Atlanta, G

    Subthreshold rho contribution in J/psi decay to omega pion pion and Kaon anti-Kaon pion

    Full text link
    We carry out a theoretical and Monte Carlo study on the J/ψJ/\psi decays into ωππ\omega\pi\pi and KKˉπK\bar{K}\pi through intermediate subthreshold ρ\rho meson by using SU(3)-symmetric Lagrangian approach. It is found that the subthreshold ρ\rho contribution is not negligible and may have significant influence on partial wave analysis of resonances in these channels, especially near the ωπ\omega \pi and KKˉK \bar{K} thresholds.Comment: 12 pages, 5 figure

    Valley-dependent Brewster angles and Goos-Hanchen effect in strained graphene

    Full text link
    We demonstrate theoretically how local strains in graphene can be tailored to generate a valley polarized current. By suitable engineering of local strain profiles, we find that electrons in opposite valleys (K or K') show different Brewster-like angles and Goos-H\"anchen shifts, exhibiting a close analogy with light propagating behavior. In a strain-induced waveguide, electrons in K and K' valleys have different group velocities, which can be used to construct a valley filter in graphene without the need for any external fields.Comment: 5 pages, 4 figure

    Understanding I=2 pi-pi Interaction

    Full text link
    A correct understanding and description of the I=2 pi-pi S-wave interaction is important for the extraction of the I=0 pi-pi S-wave interaction from experimental data and for understanding the I=0 pi-pi S-wave interaction theoretically. With t-channel rho, f2(1270) exchange and the pi pi -> rho rho -> pi pi box diagram contribution, we reproduce the pi-pi isotensor S-wave and D-wave scattering phase shifts and inelasticities up to 2.2 GeV quite well in a K-matrix formalism.Comment: Talk given at Hadron 03: 10th International Conference on Hadron Spectroscopy, Aschaffenburg, Germany, 31 Aug - 6 Sep 200

    Envelope Expansion with Core Collapse. III. Similarity Isothermal Shocks in a Magnetofluid

    Full text link
    We explore MHD solutions for envelope expansions with core collapse (EECC) with isothermal MHD shocks in a quasi-spherical symmetry and outline potential astrophysical applications of such magnetized shock flows. MHD shock solutions are classified into three classes according to the downstream characteristics near the core. Class I solutions are those characterized by free-fall collapses towards the core downstream of an MHD shock, while Class II solutions are those characterized by Larson-Penston (LP) type near the core downstream of an MHD shock. Class III solutions are novel, sharing both features of Class I and II solutions with the presence of a sufficiently strong magnetic field as a prerequisite. Various MHD processes may occur within the regime of these isothermal MHD shock similarity solutions, such as sub-magnetosonic oscillations, free-fall core collapses, radial contractions and expansions. We can also construct families of twin MHD shock solutions as well as an `isothermal MHD shock' separating two magnetofluid regions of two different yet constant temperatures. The versatile behaviours of such MHD shock solutions may be utilized to model a wide range of astrophysical problems, including star formation in magnetized molecular clouds, MHD link between the asymptotic giant branch phase to the proto-planetary nebula phase with a hot central magnetized white dwarf, relativistic MHD pulsar winds in supernova remnants, radio afterglows of soft gamma-ray repeaters and so forth.Comment: 21 pages, 33 figures, accepted by MNRA

    Increase in soil organic carbon by agricultural intensification in northern China

    Get PDF
    Acknowledgements. This research was supported by National Natural Science Foundation of China (no. 31370527 and 31261140367) and the National Science and Technology Support Program of China (no. 2012BAD14B01-2). The authors gratefully thank the Huantai Agricultural Station for providing of the Soil Fertility Survey data. We also thank Zheng Liang from China Agricultural University for the soil sampling and analysis in 2011. Thanks are extended to Jessica Bellarby for helpful discussion and suggestions.Peer reviewedPublisher PD
    corecore