52 research outputs found

    Regulatory interactions between IRG resistance GTPases in the cellular response to Toxoplasma gondii

    Get PDF
    Members of the immunity-related GTPase (IRG) family are interferon-inducible resistance factors against a broad spectrum of intracellular pathogens including Toxoplasma gondii. The molecular mechanisms governing the function and regulation of the IRG resistance system are largely unknown. We find that IRG proteins function in a system of direct, nucleotide-dependent regulatory interactions between family members. After interferon induction but before infection, the three members of the GMS subfamily of IRG proteins, Irgm1, Irgm2 and Irgm3, which possess an atypical nucleotide-binding site, regulate the intracellular positioning of the conventional GKS subfamily members, Irga6 and Irgb6. Following infection, the normal accumulation of Irga6 protein at the parasitophorous vacuole membrane (PVM) is nucleotide dependent and also depends on the presence of all three GMS proteins. We present evidence that an essential role of the GMS proteins in this response is control of the nucleotide-bound state of the GKS proteins, preventing their GTP-dependent activation before infection. Accumulation of IRG proteins at the PVM has previously been shown to be associated with a block in pathogen replication: our results relate for the first time the enzymatic properties of IRG proteins to their role in pathogen resistance

    The Cytoplasmic Location of Chicken Mx Is Not the Determining Factor for Its Lack of Antiviral Activity

    Get PDF
    Chicken Mx belongs to the Mx family of interferon-induced dynamin-like GTPases, which in some species possess potent antiviral properties. Conflicting data exist for the antiviral capability of chicken Mx. Reports of anti-influenza activity of alleles encoding an Asn631 polymorphism have not been supported by subsequent studies. The normal cytoplasmic localisation of chicken Mx may influence its antiviral capacity. Here we report further studies to determine the antiviral potential of chicken Mx against Newcastle disease virus (NDV), an economically important cytoplasmic RNA virus of chickens, and Thogoto virus, an orthomyxovirus known to be exquisitely sensitive to the cytoplasmic MxA protein from humans. We also report the consequences of re-locating chicken Mx to the nucleus.Chicken Mx was tested in virus infection assays using NDV. Neither the Asn631 nor Ser631 Mx alleles (when transfected into 293T cells) showed inhibition of virus-directed gene expression when the cells were subsequently infected with NDV. Human MxA however did show significant inhibition of NDV-directed gene expression. Chicken Mx failed to inhibit a Thogoto virus (THOV) minireplicon system in which the cytoplasmic human MxA protein showed potent and specific inhibition. Relocalisation of chicken Mx to the nucleus was achieved by inserting the Simian Virus 40 large T antigen nuclear localisation sequence (SV40 NLS) at the N-terminus of chicken Mx. Nuclear re-localised chicken Mx did not inhibit influenza (A/PR/8/34) gene expression during virus infection in cell culture or influenza polymerase activity in A/PR/8/34 or A/Turkey/50-92/91 minireplicon systems.The chicken Mx protein (Asn631) lacks inhibitory effects against THOV and NDV, and is unable to suppress influenza replication when artificially re-localised to the cell nucleus. Thus, the natural cytoplasmic localisation of the chicken Mx protein does not account for its lack of antiviral activity

    Evaluation of Brain Nuclear Medicine Imaging Tracers in a Murine Model of Sepsis-Associated Encephalopathy

    Get PDF
    PURPOSE: The purpose of this study was to evaluate a set of widely used nuclear medicine imaging agents as possible methods to study the early effects of systemic inflammation on the living brain in a mouse model of sepsis-associated encephalopathy (SAE). The lipopolysaccharide (LPS)-induced murine systemic inflammation model was selected as a model of SAE. PROCEDURES: C57BL/6 mice were used. A multimodal imaging protocol was carried out on each animal 4 h following the intravenous administration of LPS using the following tracers: [(99m)Tc][2,2-dimethyl-3-[(3E)-3-oxidoiminobutan-2-yl]azanidylpropyl]-[(3E)-3-hyd roxyiminobutan-2-yl]azanide ([(99m)Tc]HMPAO) and ethyl-7-[(125)I]iodo-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carbox ylate ([(125)I]iomazenil) to measure brain perfusion and neuronal damage, respectively; 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) to measure cerebral glucose uptake. We assessed microglia activity on another group of mice using 2-[6-chloro-2-(4-[(125)I]iodophenyl)-imidazo[1,2-a]pyridin-3-yl]-N-ethyl-N-methyl -acetamide ([(125)I]CLINME). Radiotracer uptakes were measured in different brain regions and correlated. Microglia activity was also assessed using immunohistochemistry. Brain glutathione levels were measured to investigate oxidative stress. RESULTS: Significantly reduced perfusion values and significantly enhanced [(18)F]FDG and [(125)I]CLINME uptake was measured in the LPS-treated group. Following perfusion compensation, enhanced [(125)I]iomazenil uptake was measured in the LPS-treated group's hippocampus and cerebellum. In this group, both [(18)F]FDG and [(125)I]iomazenil uptake showed highly negative correlation to perfusion measured with ([(99m)Tc]HMPAO uptake in all brain regions. No significant differences were detected in brain glutathione levels between the groups. The CD45 and P2Y12 double-labeling immunohistochemistry showed widespread microglia activation in the LPS-treated group. CONCLUSIONS: Our results suggest that [(125)I]CLINME and [(99m)Tc]HMPAO SPECT can be used to detect microglia activation and brain hypoperfusion, respectively, in the early phase (4 h post injection) of systemic inflammation. We suspect that the enhancement of [(18)F]FDG and [(125)I]iomazenil uptake in the LPS-treated group does not necessarily reflect neural hypermetabolism and the lack of neuronal damage. They are most likely caused by processes emerging during neuroinflammation, e.g., microglia activation and/or immune cell infiltration

    Evaluating the interaction between early postnatal inflammation and maternal care in the programming of adult anxiety and depression-related behaviors

    No full text
    The perinatal development of the nervous system is influenced by different external and internal stimuli. Previous data show that maternal care and perinatal inflammation can induce long-term changes in anxiety- and depression-related behavior. Our hypothesis is that both maternal care and perinatal inflammation act through interacting biological pathways to program adult behavior. To evaluate this interaction, we combined a protocol of maternal care variation in mice (C57BL/6J×BALB/c reciprocal F1 offspring) with the administration of bacterial wall lipopolysaccharide (LPS) at a previously reported sensitive development age (postnatal day 3, P3). The analysis of maternal behavior revealed that pups from C57BL/6J dams received more maternal attention than those taken care by BALB/c dams. Pups receiving LPS at P3 showed an acute corticosterone response, and a dose-dependent desensitization of this hormonal response when challenged with LPS at adulthood. We analyzed adult behavior on 6 highly validated tests and found an interaction between maternal care and early postnatal LPS on 7 anxiety-related behaviors in 4 different tests. In particular, early postnatal LPS treatment resulted in higher anxiety-related behavior when administered to females receiving more maternal care (C57 pedigree), but reduced depression-related behavior in males of the same pedigree. These results suggest that specific coping strategies are sensitive to maternal care and/or postnatal inflammation programming of adult anxiety- and depression-related behaviors, suggesting that both divergent and convergent mechanisms participate in this programming
    corecore