52 research outputs found

    Measure of Diracness in two-dimensional semiconductors

    Full text link
    We analyze the low-energy properties of two-dimensional direct-gap semiconductors, such as for example the transition-metal dichalcogenides MoS2_2, WS2_2, and their diselenide analogues MoSe2_2, WSe2_2, etc., which are currently intensively investigated. In general, their electrons have a mixed character -- they can be massive Dirac fermions as well as simple Schr\"odinger particles. We propose a measure (Diracness) for the degree of mixing between the two characters and discuss how this quantity can in principle be extracted experimentally, within magneto-transport measurements, and numerically via ab initio calculations.Comment: 6 pages, 2 figures ; new version (with minor modifications) accepted for publication in EP

    Landau levels, response functions and magnetic oscillations from a generalized Onsager relation

    Get PDF
    A generalized semiclassical quantization condition for cyclotron orbits was recently proposed by Gao and Niu \cite{Gao}, that goes beyond the Onsager relation \cite{Onsager}. In addition to the integrated density of states, it formally involves magnetic response functions of all orders in the magnetic field. In particular, up to second order, it requires the knowledge of the spontaneous magnetization and the magnetic susceptibility, as was early anticipated by Roth \cite{Roth}. We study three applications of this relation focusing on two-dimensional electrons. First, we obtain magnetic response functions from Landau levels. Second we obtain Landau levels from response functions. Third we study magnetic oscillations in metals and propose a proper way to analyze Landau plots (i.e. the oscillation index nn as a function of the inverse magnetic field 1/B1/B) in order to extract quantities such as a zero-field phase-shift. Whereas the frequency of 1/B1/B-oscillations depends on the zero-field energy spectrum, the zero-field phase-shift depends on the geometry of the cell-periodic Bloch states via two contributions: the Berry phase and the average orbital magnetic moment on the Fermi surface. We also quantify deviations from linearity in Landau plots (i.e. aperiodic magnetic oscillations), as recently measured in surface states of three-dimensional topological insulators and emphasized by Wright and McKenzie \cite{Wright}.Comment: 31 pages, 8 figures; v2: SciPost style; v3: several references added, small corrections, typos fixed; v4: abstract changed, generalized quantization condition called Roth-Gao-Niu; v5: minor modifications, 2 references adde

    Tunable orbital susceptibility in α\alpha-T3{\cal T}_3 tight-binding models

    Full text link
    We study the importance of interband effects on the orbital susceptibility of three bands α\alpha-T3{\cal T}_3 tight-binding models. The particularity of these models is that the coupling between the three energy bands (which is encoded in the wavefunctions properties) can be tuned (by a parameter α\alpha) without any modification of the energy spectrum. Using the gauge-invariant perturbative formalism that we have recently developped, we obtain a generic formula of the orbital susceptibility of α\alpha-T3{\cal T}_3 tight-binding models. Considering then three characteristic examples that exhibit either Dirac, semi-Dirac or quadratic band touching, we show that by varying the parameter α\alpha and thus the wavefunctions interband couplings, it is possible to drive a transition from a diamagnetic to a paramagnetic peak of the orbital susceptibility at the band touching. In the presence of a gap separating the dispersive bands, we show that the susceptibility inside the gap exhibits a similar dia to paramagnetic transition.Comment: 15 pages,5 figs. Proceedings of the International Workshop on Dirac Electrons in Solids 2015Proceedings of the International Workshop on Dirac Electrons in Solids 201

    Cumulative identical spin rotation effects in collisionless trapped atomic gases

    Full text link
    We discuss the strong spin segregation in a dilute trapped Fermi gas recently observed by Du et al. with "anomalous" large time scale and amplitude. In a collisionless regime, the atoms oscillate rapidly in the trap and average the inhomogeneous external field in an energy dependent way, which controls their transverse spin precession frequency. During interactions between atoms with different spin directions, the identical spin rotation effect (ISRE) transfers atoms to the up or down spin state, depending on their motional energy. Since low energy atoms are closer to the center of the trap than high energy atoms, the final outcome is a strong correlation between spins and positions.Comment: 4 pages, 2 figures; v2: comparison to experimental data adde

    Extended coherence time on the clock transition of optically trapped Rubidium

    Get PDF
    Optically trapped ensembles are of crucial importance for frequency measurements and quantum memories, but generally suffer from strong dephasing due to inhomogeneous density and light shifts. We demonstrate a drastic increase of the coherence time to 21 s on the magnetic field insensitive clock transition of Rb-87 by applying the recently discovered spin self-rephasing. This result confirms the general nature of this new mechanism and thus shows its applicability in atom clocks and quantum memories. A systematic investigation of all relevant frequency shifts and noise contributions yields a stability of 2.4E-11 x tau^(-1/2), where tau is the integration time in seconds. Based on a set of technical improvements, the presented frequency standard is predicted to rival the stability of microwave fountain clocks in a potentially much more compact setup.Comment: 5 pages, 4 figure

    Spin self-rephasing and very long coherence times in a trapped atomic ensemble

    Full text link
    We perform Ramsey spectroscopy on the ground state of ultra-cold 87Rb atoms magnetically trapped on a chip in the Knudsen regime. Field inhomogeneities over the sample should limit the 1/e contrast decay time to about 3 s, while decay times of 58 s are actually observed. We explain this surprising result by a spin self-rephasing mechanism induced by the identical spin rotation effect originating from particle indistinguishability. We propose a theory of this synchronization mechanism and obtain good agreement with the experimental observations. The effect is general and susceptible to appear in other physical systems.Comment: Revised version; improved description of the theoretical treatmen
    corecore