128 research outputs found

    Projections of leaf turgor loss point shifts under future climate change scenarios

    Get PDF
    Predicting the consequences of climate change is of utmost importance to mitigate impacts on vulnerable ecosystems; plant hydraulic traits are particularly useful proxies for predicting functional disruptions potentially occurring in the near future. This study assessed the current and future regional patterns of leaf water potential at turgor loss point (Ψtlp) by measuring and projecting the Ψtlp of 166 vascular plant species (159 angiosperms and 7 gymnosperms) across a large climatic range spanning from alpine to Mediterranean areas in NE Italy. For angiosperms, random forest models predicted a consistent shift toward more negative values in low-elevation areas, whereas for gymnosperms the pattern was more variable, particularly in the alpine sector (i.e., Alps and Prealps). Simulations were also developed to evaluate the number of threatened species under two Ψtlp plasticity scenarios (low vs. high plasticity), and it was found that in the worst-case scenario approximately 72% of the angiosperm species and 68% of gymnosperms within a location were at risk to exceed their physiological plasticity. The different responses to climate change by specific clades might produce reassembly in natural communities, undermining the resilience of natural ecosystems to climate change

    Characterization of Particles in Protein Solutions: Reaching the Limits of Current Technologies

    Get PDF
    Recent publications have emphasized the lack of characterization methods available for protein particles in a size range comprised between 0.1 and 10 μm and the potential risk of immunogenicity associated with such particles. In the present paper, we have investigated the performance of light obscuration, flow microscopy, and Coulter counter instruments for particle counting and sizing in protein formulations. We focused on particles 2–10 μm in diameter and studied the effect of silicon oil droplets originating from the barrel of pre-filled syringes, as well as the effect of high protein concentrations (up to 150 mg/ml) on the accuracy of particle characterization. Silicon oil was demonstrated to contribute significantly to the particle counts observed in pre-filled syringes. Inconsistent results were observed between different protein concentrations in the range 7.5–150 mg/ml for particles <10 μm studied by optical techniques (light obscuration and flow microscopy). However, the Coulter counter measurements were consistent across the same studied concentration range but required sufficient solution conductivity from the formulation buffer or excipients. Our results show that currently available technologies, while allowing comparisons between samples of a given protein at a fixed concentration, may be unable to measure particle numbers accurately in a variety of protein formulations, e.g., at high concentration in sugar-based formulations

    Improving hydrothermal carbonization (HTC) processes by hydrochar gasification

    Get PDF
    Hydrochar is produced by means of hydrothermal carbonization at relatively low temperatures (180-260°C) in sub-critical water. While, in many respects similar to biochar, its physical and chemical properties differ significantly (Basu, 2018). Of particular interest for this work are the higher energy density and lower ash content, that make hydrochar a possible feedstock for gasification plants with energy generation purposes. A gasification step is used instead of direct combustion to convert solid fuels in energy to achieve cleaner combustion and higher efficiency (Wang and Stiegel, 2016). In this work a 400 kg/h hydrochar gasification plant was modelled to identify optimal conditions and energetic yield of hydrochar obtained from municipal sewage. The fixed bed, updraft, gasification reactor was modeled in detail using a multi-scale, multiphase methodology already widely tested on biomass (Corbetta et al., 2015; Ranzi et al., 2014). The gas solid kinetic model was coupled with a detailed gas-phase kinetic scheme with over 200 species, including reaction intermediates, and 2000 reactions for reliable product yield prediction. Using Visual Basic Application as an interface, the predictions from the detailed simulation package were delivered to a commercial simulation package to model the energy generation section of the plant. Aspen HYSYS V10 was used for this purpose for the simplicity of integration and its widespread use in similar industrial plants. The gasification was carried out with air, air enriched in oxygen to 28%, air enriched in oxygen to 35% and pure oxygen with different amounts of steam to control the temperature in the chamber and at different values of equivalence ratio. The gasification performance was evaluated in terms of lower heating value of the generated fuel gas while the H2S formation was accounted for only in a superficial manner using rules of thumb derived from previous experimental experience

    Liposomes containing boronophenylalanine for boron neutron capture therapy

    No full text
    corecore