57 research outputs found

    Influence of Ultraviolet Radiation Exposure Time on Styrene-Ethylene-Butadiene-Styrene (SEBS) Copolymer

    Full text link
    [EN] The effect of ultraviolet radiation on styrene-ethylene-butadiene-styrene (SEBS) has been studied at different exposures times in order to obtain a better understanding of the mechanism of ageing. The polymer materials were mechanically tested and then their surfaces were analyzed using a scanning electron microscope (SEM) and atomic force microscopy (AFM). Moreover, the optical analysis of contact angle (OCA) was used to evaluate the surface energy (gamma(s)) and the yellowing index (YI) and attenuated total reflectance infrared spectroscopy (ATR-FTIR) were used to observe structural and physical changes in aging SEBS. The results obtained for the SEBS, in relation to the duration of exposure, showed superficial changes that cause a decrease in the surface energy (gamma(s)) and, therefore, a decrease in surface roughness. This led to a reduction in mechanical performance, decreasing the tensile strength by about 50% for exposure times of around 200 hours.This work was supported by the Ministry of Economy and Competitiveness (MINECO) grant number MAT2017-84909-C2-2-R). Daniel Garcia-Garcia acknowledges Generalitat Valenciana (GVA) for financial support through a postdoctoral contract (APOSTD/2019/201).Garcia-Garcia, D.; Crespo, J.; Parres, F.; Samper, M. (2020). Influence of Ultraviolet Radiation Exposure Time on Styrene-Ethylene-Butadiene-Styrene (SEBS) Copolymer. Polymers. 12(4):1-14. https://doi.org/10.3390/polym12040862S114124Picchioni, F., Giorgi, I., Passaglia, E., Ruggeri, G., & Aglietto, M. (2001). Blending of styrene-block-butadiene-block-styrene copolymer with sulfonated vinyl aromatic polymers. Polymer International, 50(6), 714-721. doi:10.1002/pi.692Zhu, J., Birgisson, B., & Kringos, N. (2014). Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54, 18-38. doi:10.1016/j.eurpolymj.2014.02.005Gupta, S., Chandra, T., Sikder, A., Menon, A., & Bhowmick, A. K. (2008). Accelerated weathering behavior of poly(phenylene ether)-based TPE. Journal of Materials Science, 43(9), 3338-3350. doi:10.1007/s10853-008-2484-6Mamodia, M., Indukuri, K., Atkins, E. T., De Jeu, W. H., & Lesser, A. J. (2008). Hierarchical description of deformation in block copolymer TPEs. Journal of Materials Science, 43(22), 7035-7046. doi:10.1007/s10853-008-3030-2Allen, N. S., Edge, M., Wilkinson, A., Liauw, C. M., Mourelatou, D., Barrio, J., & Martı́nez-Zaporta, M. A. (2000). Degradation and stabilisation of styrene–ethylene–butadiene–styrene (SEBS) block copolymer. Polymer Degradation and Stability, 71(1), 113-122. doi:10.1016/s0141-3910(00)00162-2Costa, P., Ribeiro, S., Botelho, G., Machado, A. V., & Lanceros Mendez, S. (2015). Effect of butadiene/styrene ratio, block structure and carbon nanotube content on the mechanical and electrical properties of thermoplastic elastomers after UV ageing. Polymer Testing, 42, 225-233. doi:10.1016/j.polymertesting.2015.02.002Tomacheski, D., Pittol, M., Lopes, A. P. M., Simões, D. N., Ribeiro, V. F., & Santana, R. M. C. (2017). Effects of Weathering on Mechanical, Antimicrobial Properties and Biodegradation Process of Silver Loaded TPE Compounds. Journal of Polymers and the Environment, 26(1), 73-82. doi:10.1007/s10924-016-0927-8Singh, B., & Sharma, N. (2008). Mechanistic implications of plastic degradation. Polymer Degradation and Stability, 93(3), 561-584. doi:10.1016/j.polymdegradstab.2007.11.008White, C. C., Tan, K. T., Hunston, D. L., Nguyen, T., Benatti, D. J., Stanley, D., & Chin, J. W. (2011). Laboratory accelerated and natural weathering of styrene–ethylene–butylene–styrene (SEBS) block copolymer. Polymer Degradation and Stability, 96(6), 1104-1110. doi:10.1016/j.polymdegradstab.2011.03.003Allen, N. (2004). Photooxidation of styrene–ethylene–butadiene–styrene (SEBS) block copolymer. Journal of Photochemistry and Photobiology A: Chemistry, 162(1), 41-51. doi:10.1016/s1010-6030(03)00311-3Flaris, V., & Stachurski, Z. H. (1992). The effects of processing on the mechanical properties of a polyolefin blend. Polymer International, 27(3), 267-273. doi:10.1002/pi.4990270312Li, Y., Li, L., Zhang, Y., Zhao, S., Xie, L., & Yao, S. (2009). Improving the aging resistance of styrene-butadiene-styrene tri-block copolymer and application in polymer-modified asphalt. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.31458Xu, X., Yu, J., Xue, L., Zhang, C., He, B., & Wu, M. (2017). Structure and performance evaluation on aged SBS modified bitumen with bi- or tri-epoxy reactive rejuvenating system. Construction and Building Materials, 151, 479-486. doi:10.1016/j.conbuildmat.2017.06.102Si Bachir, D., Dekhli, S., & Ait Mokhtar, K. (2016). Rheological Evaluation of Ageing Properties of SEBS Polymer Modified Bitumens. Periodica Polytechnica Civil Engineering, 397-404. doi:10.3311/ppci.7853Awaja, F., Gilbert, M., Kelly, G., Fox, B., & Pigram, P. J. (2009). Adhesion of polymers. Progress in Polymer Science, 34(9), 948-968. doi:10.1016/j.progpolymsci.2009.04.007Poisson, C., Hervais, V., Lacrampe, M. F., & Krawczak, P. (2006). Optimization of PE/binder/PA extrusion blow-molded films. II. Adhesion properties improvement using binder/EVA blends. Journal of Applied Polymer Science, 101(1), 118-127. doi:10.1002/app.22407Zhang, H., Guo, W., Yu, Y., Li, B., & Wu, C. (2007). Structure and properties of compatibilized recycled poly(ethylene terephthalate)/linear low density polyethylene blends. European Polymer Journal, 43(8), 3662-3670. doi:10.1016/j.eurpolymj.2007.05.001Guerrica-Echevarría, G., Eguiazábal, J. I., & Nazábal, J. (2007). Influence of compatibilization on the mechanical behavior of poly(trimethylene terephthalate)/poly(ethylene–octene) blends. European Polymer Journal, 43(3), 1027-1037. doi:10.1016/j.eurpolymj.2006.11.036Chang, Y.-W., Shin, J.-Y., & Ryu, S. H. (2004). Preparation and properties of styrene–ethylene/butylene–styrene(SEBS)–clay hybrids. Polymer International, 53(8), 1047-1051. doi:10.1002/pi.1480Chen, W.-C., Lai, S.-M., & Chen, C.-M. (2008). Preparation and properties of styrene-ethylene-butylene-styrene block copolymer/clay nanocomposites: I. Effect of clay content and compatibilizer types. Polymer International, 57(3), 515-522. doi:10.1002/pi.2377Qin, R.-Y., & Schreiber, H. P. (1999). Adhesion at partially restructured polymer surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 156(1-3), 85-93. doi:10.1016/s0927-7757(99)00061-8Zhang, X., Xie, F., Pen, Z., Zhang, Y., Zhang, Y., & Zhou, W. (2002). Effect of nucleating agent on the structure and properties of polypropylene/poly(ethylene–octene) blends. European Polymer Journal, 38(1), 1-6. doi:10.1016/s0014-3057(01)00182-3Beholz, L. G., Aronson, C. L., & Zand, A. (2005). Adhesion modification of polyolefin surfaces with sodium hypochlorite in acidic media. Polymer, 46(13), 4604-4613. doi:10.1016/j.polymer.2005.03.086Kinloch, A. J. (1980). The science of adhesion. Journal of Materials Science, 15(9), 2141-2166. doi:10.1007/bf00552302Lippert, T., & Dickinson, J. T. (2003). Chemical and Spectroscopic Aspects of Polymer Ablation:  Special Features and Novel Directions. Chemical Reviews, 103(2), 453-486. doi:10.1021/cr010460qVan der Leeden, M. C., & Frens, G. (2002). Surface Properties of Plastic Materials in Relation to Their Adhering Performance. Advanced Engineering Materials, 4(5), 280-289. doi:10.1002/1527-2648(20020503)4:53.0.co;2-zPukánszky, B. (2005). Interfaces and interphases in multicomponent materials: past, present, future. European Polymer Journal, 41(4), 645-662. doi:10.1016/j.eurpolymj.2004.10.035Tjong, S. C., Xu, S.-A., & Mai, Y.-W. (2003). Journal of Materials Science, 38(2), 207-215. doi:10.1023/a:1021132725370Sanchis, R., Fenollar, O., García, D., Sánchez, L., & Balart, R. (2008). Improved adhesion of LDPE films to polyolefin foams for automotive industry using low-pressure plasma. International Journal of Adhesion and Adhesives, 28(8), 445-451. doi:10.1016/j.ijadhadh.2008.04.002Brockmann, W., & Hüther, R. (1996). Adhesion mechanisms of pressure sensitive adhesives. International Journal of Adhesion and Adhesives, 16(2), 81-86. doi:10.1016/0143-7496(96)89797-1Brovko, O., Rosso, P., & Friedrich, K. (2002). Journal of Materials Science Letters, 21(4), 305-308. doi:10.1023/a:1017936206578Court, R. S., Sutcliffe, M. P. F., & Tavakoli, S. M. (2001). Ageing of adhesively bonded joints—fracture and failure analysis using video imaging techniques. International Journal of Adhesion and Adhesives, 21(6), 455-463. doi:10.1016/s0143-7496(01)00022-7Komvopoulos, K. (2003). Adhesion and friction forces in microelectromechanical systems: mechanisms, measurement, surface modification techniques, and adhesion theory. Journal of Adhesion Science and Technology, 17(4), 477-517. doi:10.1163/15685610360554384Pijpers, A. ., & Meier, R. J. (2001). Adhesion behaviour of polypropylenes after flame treatment determined by XPS(ESCA) spectral analysis. Journal of Electron Spectroscopy and Related Phenomena, 121(1-3), 299-313. doi:10.1016/s0368-2048(01)00341-3Yu, S., Hu, H., Zhang, Y., & Liu, Y. (2008). Effect of transfer film on tribological behavior of polyamide 66-based binary and ternary nanocomposites. Polymer International, 57(3), 454-462. doi:10.1002/pi.2337Żenkiewicz, M. (2007). Comparative study on the surface free energy of a solid calculated by different methods. Polymer Testing, 26(1), 14-19. doi:10.1016/j.polymertesting.2006.08.005Kumar, S., & Misra, R. K. (2007). Analysis of Banana Fibers Reinforced Low‐density Polyethylene/Poly(Є‐caprolactone) Composites. Soft Materials, 4(1), 1-13. doi:10.1080/15394450600823040Fowkes, F. ., McCarthy, D. ., & Mostafa, M. . (1980). Contact angles and the equilibrium spreading pressures of liquids on hydrophobic solids. Journal of Colloid and Interface Science, 78(1), 200-206. doi:10.1016/0021-9797(80)90508-1Owens, D. K., & Wendt, R. C. (1969). Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 13(8), 1741-1747. doi:10.1002/app.1969.070130815Zhao, Y., Tang, S., Myung, S.-W., Lu, N., & Choi, H.-S. (2006). Effect of washing on surface free energy of polystyrene plate treated by RF atmospheric pressure plasma. Polymer Testing, 25(3), 327-332. doi:10.1016/j.polymertesting.2005.12.007Hänni‐Ciunel, K., Findenegg, G. H., & von Klitzing, R. (2007). Water Contact Angle On Polyelectrolyte‐Coated Surfaces: Effects of Film Swelling and Droplet Evaporation. Soft Materials, 5(2-3), 61-73. doi:10.1080/15394450701554452Radovanovic, E., Carone, E., & Gonçalves, M. . (2004). Comparative AFM and TEM investigation of the morphology of nylon6-rubber blends. Polymer Testing, 23(2), 231-237. doi:10.1016/s0142-9418(03)00099-0Drnovská, H., Lapčík, L., Buršíková, V., Zemek, J., & Barros-Timmons, A. M. (2003). Surface properties of polyethylene after low-temperature plasma treatment. Colloid and Polymer Science, 281(11), 1025-1033. doi:10.1007/s00396-003-0871-8Lehocký, M., Drnovská, H., Lapčı́ková, B., Barros-Timmons, A. ., Trindade, T., Zembala, M., & Lapčı́k, L. (2003). Plasma surface modification of polyethylene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 222(1-3), 125-131. doi:10.1016/s0927-7757(03)00242-5Ortiz-Magán, A. B., Pastor-Blas, M. M., Ferrándiz-Gómez, T. P., Morant-Zacarés, C., & Martín-Martínez, J. M. (2001). Plasmas and Polymers, 6(1/2), 81-105. doi:10.1023/a:1011352903775Mailhot, B., & Gardette, J. L. (1992). Polystyrene photooxidation. 2. A pseudo wavelength effect. Macromolecules, 25(16), 4127-4133. doi:10.1021/ma00042a013Mailhot, B., Jarroux, N., & Gardette, J.-L. (2000). Comparative analysis of the photo-oxidation of polystyrene and poly(α-methylstyrene). Polymer Degradation and Stability, 68(3), 321-326. doi:10.1016/s0141-3910(00)00016-1Luengo, C., Allen, N. S., Edge, M., Wilkinson, A., Parellada, M. D., Barrio, J. A., & Santa, V. R. (2006). Photo-oxidative degradation mechanisms in styrene–ethylene–butadiene–styrene (SEBS) triblock copolymer. Polymer Degradation and Stability, 91(4), 947-956. doi:10.1016/j.polymdegradstab.2005.06.017Han, X., Zhou, L., Liu, H., & Hu, Y. (2007). Effect of in situ oxidization with potassium permanganate on the morphologies of SEBS membranes. Polymer Degradation and Stability, 92(1), 75-85. doi:10.1016/j.polymdegradstab.2006.09.006Allen, N. S., Edge, M., Mourelatou, D., Wilkinson, A., Liauw, C. M., Dolores Parellada, M., … Ruiz Santa Quiteria, V. (2003). Influence of ozone on styrene–ethylene–butylene–styrene (SEBS) copolymer. Polymer Degradation and Stability, 79(2), 297-307. doi:10.1016/s0141-3910(02)00293-8Fombuena, V., Balart, J., Boronat, T., Sánchez-Nácher, L., & Garcia-Sanoguera, D. (2013). Improving mechanical performance of thermoplastic adhesion joints by atmospheric plasma. Materials & Design, 47, 49-56. doi:10.1016/j.matdes.2012.11.031Sanchis, M. R., Calvo, O., Fenollar, O., Garcia, D., & Balart, R. (2008). Characterization of the surface changes and the aging effects of low-pressure nitrogen plasma treatment in a polyurethane film. Polymer Testing, 27(1), 75-83. doi:10.1016/j.polymertesting.2007.09.002Sheikhy, H., Shahidzadeh, M., Ramezanzadeh, B., & Noroozi, F. (2013). Studying the effects of chain extenders chemical structures on the adhesion and mechanical properties of a polyurethane adhesive. Journal of Industrial and Engineering Chemistry, 19(6), 1949-1955. doi:10.1016/j.jiec.2013.03.008Švab, I., Musil, V., Šmit, I., & Makarovič, M. (2007). Mechanical properties of wollastonite-reinforced polypropylene composites modified with SEBS and SEBS-g-MA elastomers. Polymer Engineering & Science, 47(11), 1873-1880. doi:10.1002/pen.20897Sanchis, M. R., Blanes, V., Blanes, M., Garcia, D., & Balart, R. (2006). Surface modification of low density polyethylene (LDPE) film by low pressure O2 plasma treatment. European Polymer Journal, 42(7), 1558-1568. doi:10.1016/j.eurpolymj.2006.02.001Ganguly, A., & Bhowmick, A. K. (2009). Effect of polar modification on morphology and properties of styrene-(ethylene-co-butylene)-styrene triblock copolymer and its montmorillonite clay-based nanocomposites. Journal of Materials Science, 44(3), 903-918. doi:10.1007/s10853-008-3183-

    Comparative study of the presence of latex and polychloroprene in the behavior of sintered powder EPDMCR, ethylene-propylenediene-monomer crumb rubber

    Full text link
    In this work, the mechanical behavior of sintered waste material of ethylene-propylene-diene-monomer crumb rubber (EPDMCR) is analyzed, optimizing the temperature and compression pressure. The results obtained showed that an increase in temperature and compression pressure gives a significant improvement in the mechanical properties of the material. We later mixed the EPDMCR particles with different percentages of adhesives with the aim of further improving the mechanical performance obtained from the sintered particles. The adhesives used in this study were latex and polychloroprene, and the optimum mechanical performance obtained came from mixes with polychloroprene, using a mix with 50% adhesive. The study was concluded with an analysis of images of the material using a scanning electron microscope (SEM), in order to observe the EPDMCR-adhesive interaction.Crespo Amorós, JE.; Parres, F.; Nadal Gisbert, AV. (2012). Comparative study of the presence of latex and polychloroprene in the behavior of sintered powder EPDMCR, ethylene-propylenediene-monomer crumb rubber. Journal of Elastomers and Plastics. 44(2):127-144. doi:10.1177/0095244311418318S127144442Osman, H., Ismail, H., & Mariatti, M. (2007). The Effect of Recycled Newspaper Content and Size on the Properties of Polypropylene (PP)/Natural Rubber (NR) Composites. Polymer-Plastics Technology and Engineering, 47(1), 23-29. doi:10.1080/03602550701575961Crespo, J. E., Parres, F., & Nadal, A. (2009). Mechanical behavior analysis of sintered products of natural rubber crumb rubber (NRCR) using adhesives. Materialwissenschaft und Werkstofftechnik, 40(3), 211-217. doi:10.1002/mawe.200900429Setua, D. K., & Gupta, Y. N. (2007). On the use of micro thermal analysis to characterize compatibility of nitrile rubber blends. Thermochimica Acta, 462(1-2), 32-37. doi:10.1016/j.tca.2007.06.004Nakason, C., Kaesaman, A., Samoh, Z., Homsin, S., & Kiatkamjornwong, S. (2002). Rheological properties of maleated natural rubber and natural rubber blends. Polymer Testing, 21(4), 449-455. doi:10.1016/s0142-9418(01)00109-xJincheng, W., Yuehui, C., & Jihu, W. (2005). Novel Reinforcing Filler: Application to Natural Rubber (NR) System. Journal of Elastomers & Plastics, 37(2), 169-180. doi:10.1177/0095244305052010Sutanto, P., Picchioni, F., Janssen, L. P. B. M., Dijkhuis, K. A. J., Dierkes, W. K., & Noordermeer, J. W. M. (2006). State of the Art: Recycling of EPDM Rubber Vulcanizates. International Polymer Processing, 21(2), 211-217. doi:10.3139/217.1906Jacob, C., Bhowmick, A. K., De, P. P., & De, S. K. (2003). Utilization of Powdered EPDM Scrap in EPDM Compound. Rubber Chemistry and Technology, 76(1), 36-59. doi:10.5254/1.3547740Jacob, C., Bhattacharya, A. K., Bhowmick, A. K., De, P. P., & De, S. K. (2003). Recycling of ethylene propylene diene monomer (EPDM) waste. III. Processability of EPDM rubber compound containing ground EPDM vulcanizates. Journal of Applied Polymer Science, 87(14), 2204-2215. doi:10.1002/app.11474Jacob, C., Bhowmick, A. K., De, P. P., & De, S. K. (2002). Studies on ground EPDM vulcanisate as filler in window seal formulation. Plastics, Rubber and Composites, 31(5), 212-219. doi:10.1179/146580102225003029Jacob, C., De, P. P., Bhowmick, A. K., & De, S. K. (2001). Recycling of EPDM waste. II. Replacement of virgin rubber by ground EPDM vulcanizate in EPDM/PP thermoplastic elastomeric composition. Journal of Applied Polymer Science, 82(13), 3304-3312. doi:10.1002/app.2189Jacob, C., De, P. P., Bhowmick, A. K., & De, S. K. (2001). Recycling of EPDM waste. I. Effect of ground EPDM vulcanizate on properties of EPDM rubber. Journal of Applied Polymer Science, 82(13), 3293-3303. doi:10.1002/app.2188Grigoryeva, O. P., Fainleib, A. M., Tolstov, A. L., Starostenko, O. M., Lievana, E., & Karger-Kocsis, J. (2004). Thermoplastic elastomers based on recycled high-density polyethylene, ethylene-propylene-diene monomer rubber, and ground tire rubber. Journal of Applied Polymer Science, 95(3), 659-671. doi:10.1002/app.21177Mathew, G. (2003). Journal of Materials Science, 38(11), 2469-2481. doi:10.1023/a:1023965420749Morin, J. E., Williams, D. E., & Farris, R. J. (2002). A Novel Method to Recycle Scrap Tires: High-Pressure High-Temperature Sintering. Rubber Chemistry and Technology, 75(5), 955-968. doi:10.5254/1.3547695Rajeev, R. S., & De, S. K. (2004). Thermoplastic Elastomers Based on Waste Rubber and Plastics. Rubber Chemistry and Technology, 77(3), 569-578. doi:10.5254/1.3547837Yehia, A. A., Mull, M. A., Ismail, M. N., Hefny, Y. A., & Abdel-Bary, E. M. (2004). Effect of chemically modified waste rubber powder as a filler in natural rubber vulcanizates. Journal of Applied Polymer Science, 93(1), 30-36. doi:10.1002/app.20349Zhang, K., Shen, H., Zhang, X., Lan, R., & Chen, H. (2009). Preparation and Properties of a Waterborne Contact Adhesive Based on Polychloroprene Latex and Styrene-Acrylate Emulsion Blend. Journal of Adhesion Science and Technology, 23(1), 163-175. doi:10.1163/156856108x344658Park, S. W., Kim, B. C., & Lee, D. G. (2009). Tensile Strength of Joints Bonded With a Nano-particle-Reinforced Adhesive. Journal of Adhesion Science and Technology, 23(1), 95-113. doi:10.1163/156856108x344063Buchman, A., Dodiuk-Kenig, H., Dotan, A., Tenne, R., & Kenig, S. (2009). Toughening of Epoxy Adhesives by Nanoparticles. Journal of Adhesion Science and Technology, 23(5), 753-768. doi:10.1163/156856108x379209Likozar, B., & Krajnc, M. (2008). A study of heat transfer during molding of elastomers. Chemical Engineering Science, 63(12), 3181-3192. doi:10.1016/j.ces.2008.03.031Yan, L., Kou, K., Ji, T., Liang, G., & Ha, E. (2007). Application of a new modified epoxy adhesive for bonding fluorine rubber to metal. Journal of Adhesion Science and Technology, 21(15), 1483-1496. doi:10.1163/156856107782844792Smitthipong, W., Nardin, M., Schultz, J., & Suchiva, K. (2007). Adhesion and self-adhesion of rubbers, crosslinked by electron beam irradiation. International Journal of Adhesion and Adhesives, 27(5), 352-357. doi:10.1016/j.ijadhadh.2006.09.010Colom, X., Carrillo, F., & Cañavate, J. (2007). Composites reinforced with reused tyres: Surface oxidant treatment to improve the interfacial compatibility. Composites Part A: Applied Science and Manufacturing, 38(1), 44-50. doi:10.1016/j.compositesa.2006.01.022Liu, L., Luo, Y., Jia, D., Fu, W., & Guo, B. (2006). Structure and Properties of Natural Rubber-Organoclay Nanocomposites Prepared by Grafting and Intercalating Method in Latex. Journal of Elastomers & Plastics, 38(2), 147-161. doi:10.1177/0095244306057425Budrugeac, P. (2001). Thermal degradation of glass reinforced epoxy resin and polychloroprene rubber: the correlation of kinetic parameters of isothermal accelerated aging with those obtained from non-isothermal data. Polymer Degradation and Stability, 74(1), 125-132. doi:10.1016/s0141-3910(01)00112-4Arayasantiparb, D., McKnight, S., & Libera, M. (2001). Compositional variation within the epoxy/adherend interphase. Journal of Adhesion Science and Technology, 15(12), 1463-1484. doi:10.1163/156856101753213312Kim, J. I., Ryu, S. H., & Chang, Y. W. (2000). Mechanical and dynamic mechanical properties of waste rubber powder/HDPE composite. Journal of Applied Polymer Science, 77(12), 2595-2602. doi:10.1002/1097-4628(20000919)77:123.0.co;2-cCepeda-Jiménez, C. M., Pastor-blas, M. M., Ferrándiz-Gómez, T. P., & Martín-Martínez, J. M. (2000). Surface Characterization of Vulcanized Rubber Treated with Sulfuric Acid and its Adhesion to Polyurethane Adhesive. The Journal of Adhesion, 73(2-3), 135-160. doi:10.1080/00218460008029303Sutanto, P., Picchioni, F., Janssen, L. P. B. M., Dijkhuis, K. A. J., Dierkes, W. K., & Noordermeer, J. W. M. (2006). EPDM rubber reclaim from devulcanized EPDM. Journal of Applied Polymer Science, 102(6), 5948-5957. doi:10.1002/app.25153Yun, J., Yashin, V. V., & Isayev, A. I. (2003). Ultrasonic devulcanization of carbon black-filled ethylene propylene diene monomer rubber. Journal of Applied Polymer Science, 91(3), 1646-1656. doi:10.1002/app.13320Yun, J., & Isayev, A. I. (2003). Recycling of roofing membrane rubber by ultrasonic devulcanization. Polymer Engineering & Science, 43(4), 809-821. doi:10.1002/pen.10067Pandey, K. ., Setua, D. ., & Mathur, G. . (2003). Material behaviour. Polymer Testing, 22(3), 353-359. doi:10.1016/s0142-9418(02)00112-5Setua, D. K. (1985). Scanning electron microscopy studies on thermo-oxidative ageing of polychloroprene rubber. Polymer Degradation and Stability, 12(2), 169-180. doi:10.1016/0141-3910(85)90075-8Ashalatha, P. V., George, K. E., & Francis, D. J. (1997). Scanning Electron Microscopic Studies of PP/EPDM/NR Ternary Blends. Journal of Elastomers & Plastics, 29(1), 92-101. doi:10.1177/009524439702900106Agarwal, K., Setua, D. K., & Sekhar, K. (2005). Scanning electron microscopy study on the influence of temperature on tear strength and failure mechanism of natural rubber vulcanizates. Polymer Testing, 24(6), 781-789. doi:10.1016/j.polymertesting.2005.03.004Nadal, A., Ferrer, C., Monzo, M., & Lopez, J. (2008). Etude des mécanismes de recyclage des caoutchoucs provenant des déchets de pneus. Annales de chimie Science des Matériaux, 33(3), 179-188. doi:10.3166/acsm.33.179-188Tripathy, A. R., Morin, J. E., Williams, D. E., Eyles, S. J., & Farris, R. J. (2002). A Novel Approach to Improving the Mechanical Properties in Recycled Vulcanized Natural Rubber and Its Mechanism. Macromolecules, 35(12), 4616-4627. doi:10.1021/ma012110bGriffith, A. A. (1921). The Phenomena of Rupture and Flow in Solids. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 221(582-593), 163-198. doi:10.1098/rsta.1921.000

    Study of the Properties of a Biodegradable Polymer Filled with DierentWood Flour Particles

    Full text link
    [EN] Lignocellulosic wood flour particles with three different sizes were used to reinforce Solanyl® type bioplastic in three compositions (10, 20, and 30 wt.%) and further processed by melt-extrusion and injection molding to simulate industrial conditions. The wood flour particles were morphologically and granulometric analyzed to evaluate their use as reinforcing filler. The Fuller method on wood flour particles was successfully applied and the obtained results were subsequently corroborated by the mechanical characterization. The rheological studies allowed observing how the viscosity was affected by the addition of wood flour and to recover information about the processing conditions of the biocomposites. Results suggest that all particles can be employed in extrusion processes (shear rate less than 1000 s¿1 ). However, under injection molding conditions, biocomposites with high percentages of wood flour or excessively large particles may cause an increase in defective injected-parts due to obstruction of the gate in the mold. From a processing point of view and based on the biocomposites performance, the best combination resulted in Solanyl® type biopolymer reinforced with wood flour particles loaded up to 20 wt.% of small and medium particles size. The obtained biocomposites are of interest for injected molding parts for several industrial applications.Parres, F.; Peydro, MA.; Juárez Varón, D.; Arrieta, MP.; Aldas, M. (2020). Study of the Properties of a Biodegradable Polymer Filled with DierentWood Flour Particles. Polymers. 12(12):1-24. https://doi.org/10.3390/polym12122974124121

    Panels of eco-friendly materials for architectural acoustics

    Full text link
    [EN] The objective of this work is to study the acoustic and mechanical properties of environmentally friendly materials manufactured through the process of resin infusion made from different types of fibres: some are biodegradable obtained from renewable resources and others from recycled textile waste. The materials studied are composed of fibres of jute, hemp, coconut, biaxial linen and textile waste. The modulus of elasticity and the airborne sound insulation are determined through dynamic and acoustic tests, respectively. The behaviour of these innovative materials is compared to some traditional materials commonly used in architectural acoustics. The acoustic study of these environmentally friendly materials is carried out considering them as light elements of a single layer for their application to insulation of walls. The results are compared to plasterboards, considered as the most commonly used light material in buildings for airborne sound insulation. In conclusion, these materials are a real and effective alternative to the traditional composites of synthetic matrices and reinforcements of glass fibres and there is a reduction in the production cost compared to the usual porous synthetic media that have expensive production processes.Fontoba-Ferrándiz, J.; Juliá Sanchis, E.; Crespo, J.; Segura Alcaraz, JG.; Gadea Borrell, JM.; Parres, F. (2020). Panels of eco-friendly materials for architectural acoustics. Journal of Composite Materials. 54(25):3743-3753. https://doi.org/10.1177/0021998320918914S374337535425Yahya, M. N., Sambu, M., Latif, H. A., & Junaid, T. M. (2017). A study of Acoustics Performance on Natural Fibre Composite. IOP Conference Series: Materials Science and Engineering, 226, 012013. doi:10.1088/1757-899x/226/1/012013Putra, A., Or, K. H., Selamat, M. Z., Nor, M. J. M., Hassan, M. H., & Prasetiyo, I. (2018). Sound absorption of extracted pineapple-leaf fibres. Applied Acoustics, 136, 9-15. doi:10.1016/j.apacoust.2018.01.029Dunne, R., Desai, D., & Sadiku, R. (2017). Material characterization of blended sisal-kenaf composites with an ABS matrix. Applied Acoustics, 125, 184-193. doi:10.1016/j.apacoust.2017.03.022Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276-277(1), 1-24. doi:10.1002/(sici)1439-2054(20000301)276:13.0.co;2-wLuckachan, G. E., & Pillai, C. K. S. (2011). Biodegradable Polymers- A Review on Recent Trends and Emerging Perspectives. Journal of Polymers and the Environment, 19(3), 637-676. doi:10.1007/s10924-011-0317-1Belakroum, R., Gherfi, A., Kadja, M., Maalouf, C., Lachi, M., El Wakil, N., & Mai, T. H. (2018). Design and properties of a new sustainable construction material based on date palm fibers and lime. Construction and Building Materials, 184, 330-343. doi:10.1016/j.conbuildmat.2018.06.196Sèbe, G. (2000). Applied Composite Materials, 7(5/6), 341-349. doi:10.1023/a:1026538107200Yates, M. R., & Barlow, C. Y. (2013). Life cycle assessments of biodegradable, commercial biopolymers—A critical review. Resources, Conservation and Recycling, 78, 54-66. doi:10.1016/j.resconrec.2013.06.010Rouison, D., Sain, M., & Couturier, M. (2006). Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the materials. Composites Science and Technology, 66(7-8), 895-906. doi:10.1016/j.compscitech.2005.07.040Sreekumar, P. A., Joseph, K., Unnikrishnan, G., & Thomas, S. (2007). A comparative study on mechanical properties of sisal-leaf fibre-reinforced polyester composites prepared by resin transfer and compression moulding techniques. Composites Science and Technology, 67(3-4), 453-461. doi:10.1016/j.compscitech.2006.08.025Rassmann, S., Reid, R. G., & Paskaramoorthy, R. (2010). Effects of processing conditions on the mechanical and water absorption properties of resin transfer moulded kenaf fibre reinforced polyester composite laminates. Composites Part A: Applied Science and Manufacturing, 41(11), 1612-1619. doi:10.1016/j.compositesa.2010.07.009Vijay, R., & Singaravelu, D. L. (2016). Experimental investigation on the mechanical properties ofCyperus pangoreifibers and jute fiber-based natural fiber composites. International Journal of Polymer Analysis and Characterization, 21(7), 617-627. doi:10.1080/1023666x.2016.1192354Williams, G. I. (2000). Applied Composite Materials, 7(5/6), 421-432. doi:10.1023/a:1026583404899O’Donnell, A., Dweib, M. ., & Wool, R. . (2004). Natural fiber composites with plant oil-based resin. Composites Science and Technology, 64(9), 1135-1145. doi:10.1016/j.compscitech.2003.09.024Tran, P., Graiver, D., & Narayan, R. (2006). Biocomposites synthesized from chemically modified soy oil and biofibers. Journal of Applied Polymer Science, 102(1), 69-75. doi:10.1002/app.22265Liu, Q., & Hughes, M. (2008). The fracture behaviour and toughness of woven flax fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 39(10), 1644-1652. doi:10.1016/j.compositesa.2008.07.008Scarponi, C., Pizzinelli, C. S., Sánchez-Sáez, S., & Barbero, E. (2009). Impact Load Behaviour of Resin Transfer Moulding (RTM) Hemp Fibre Composite Laminates. Journal of Biobased Materials and Bioenergy, 3(3), 298-310. doi:10.1166/jbmb.2009.1040Dahy, H. (2017). Biocomposite materials based on annual natural fibres and biopolymers – Design, fabrication and customized applications in architecture. Construction and Building Materials, 147, 212-220. doi:10.1016/j.conbuildmat.2017.04.079Saba, N., Paridah, M. T., & Jawaid, M. (2015). Mechanical properties of kenaf fibre reinforced polymer composite: A review. Construction and Building Materials, 76, 87-96. doi:10.1016/j.conbuildmat.2014.11.043Senthilkumar, K., Saba, N., Rajini, N., Chandrasekar, M., Jawaid, M., Siengchin, S., & Alotman, O. Y. (2018). Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review. Construction and Building Materials, 174, 713-729. doi:10.1016/j.conbuildmat.2018.04.143Alves, C., Ferrão, P. M. C., Silva, A. J., Reis, L. G., Freitas, M., Rodrigues, L. B., & Alves, D. E. (2010). Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production, 18(4), 313-327. doi:10.1016/j.jclepro.2009.10.022Van Vuure, A. W., Baets, J., Wouters, K., & Hendrickx, K. (2015). Compressive properties of natural fibre composites. Materials Letters, 149, 138-140. doi:10.1016/j.matlet.2015.01.158Galan-Marin, C., Rivera-Gomez, C., & Garcia-Martinez, A. (2016). Use of Natural-Fiber Bio-Composites in Construction versus Traditional Solutions: Operational and Embodied Energy Assessment. Materials, 9(6), 465. doi:10.3390/ma9060465Bogoeva-Gaceva, G., Avella, M., Malinconico, M., Buzarovska, A., Grozdanov, A., Gentile, G., & Errico, M. E. (2007). Natural fiber eco-composites. Polymer Composites, 28(1), 98-107. doi:10.1002/pc.20270Peng, L., Song, B., Wang, J., & Wang, D. (2015). Mechanic and Acoustic Properties of the Sound-Absorbing Material Made from Natural Fiber and Polyester. Advances in Materials Science and Engineering, 2015, 1-5. doi:10.1155/2015/274913Benfratello, S., Capitano, C., Peri, G., Rizzo, G., Scaccianoce, G., & Sorrentino, G. (2013). Thermal and structural properties of a hemp–lime biocomposite. Construction and Building Materials, 48, 745-754. doi:10.1016/j.conbuildmat.2013.07.096Adekomaya, O., Jamiru, T., Sadiku, R., & Huan, Z. (2015). A review on the sustainability of natural fiber in matrix reinforcement – A practical perspective. Journal of Reinforced Plastics and Composites, 35(1), 3-7. doi:10.1177/0731684415611974Kadam, A., Pawar, M., Yemul, O., Thamke, V., & Kodam, K. (2015). Biodegradable biobased epoxy resin from karanja oil. Polymer, 72, 82-92. doi:10.1016/j.polymer.2015.07.002Yan, L., Chouw, N., & Jayaraman, K. (2014). Flax fibre and its composites – A review. Composites Part B: Engineering, 56, 296-317. doi:10.1016/j.compositesb.2013.08.014Wambua, P., Ivens, J., & Verpoest, I. (2003). Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology, 63(9), 1259-1264. doi:10.1016/s0266-3538(03)00096-4Williams, C., Summerscales, J., & Grove, S. (1996). Resin Infusion under Flexible Tooling (RIFT): a review. Composites Part A: Applied Science and Manufacturing, 27(7), 517-524. doi:10.1016/1359-835x(96)00008-5Modi, D., Correia, N., Johnson, M., Long, A., Rudd, C., & Robitaille, F. (2007). Active control of the vacuum infusion process. Composites Part A: Applied Science and Manufacturing, 38(5), 1271-1287. doi:10.1016/j.compositesa.2006.11.012Corbière-Nicollier, T., Gfeller Laban, B., Lundquist, L., Leterrier, Y., Månson, J.-A. ., & Jolliet, O. (2001). Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resources, Conservation and Recycling, 33(4), 267-287. doi:10.1016/s0921-3449(01)00089-1Del Rey, R., Alba, J., Bertó, L., & Gregori, A. (2017). Small-sized reverberation chamber for the measurement of sound absorption. Materiales de Construcción, 67(328), 139. doi:10.3989/mc.2017.0731

    Calculation of loss of mechanical properties (wt%) through reprocessing and presence of impurities

    Full text link
    [EN] Recycled materials are characterized by having endured different reprocessing cycles that cause thermal degradation and by containing often a number of impurities from different sources. In this paper, is studied the calculation of which of these two factors analyzed has more weight in the fall of mechanical properties. To carry out such work has investigated an ABS recycled from alarm systems used in Textile garments sector with presence of impurities of a 4% of PE. The results show that in the case studied, for an ABS reprocessed twice with a presence of 4% of impurities, is obtained that the thermal degradation factor has a weight of 25%, meanwhile, the presence of impurities has a weight of 75% in the fall of its properties.[ES] Los materiales reciclados se caracterizan por haber soportado diferentes ciclos de reprocesados que provocan degradación térmica y por contener frecuentemente una serie de impurezas de distinta procedencia. En este trabajo se expone el cálculo de cuál de estos dos factores tiene más peso en la caída de propiedades mecánicas. Para la realización de dicho trabajo se ha investigado un ABS reciclado procedente de sistemas de alarma utilizadas en prendas del sector Textil con una presencia de impurezas del 4% de PE. Los resultados muestran que en el caso estudiado, un ABS reprocesado dos veces y con una presencia de impurezas del 4%, el factor de la degradación térmica tiene un peso de un 25%, mientras que el otro factor, la presencias de impurezas tiene un peso del 75% en la caída de propiedades.Peydro, MA.; Parres, F.; Navarro Vidal, R.; Juárez Varón, D. (2015). Cálculo de pérdida de propiedades mecánicas (%) a través de reprocesado y presencia de impurezas. 3C Tecnología. 4(2):45-53. http://hdl.handle.net/10251/65402S45534

    Study of rheological behavior of reprocessing polyamide 6

    Full text link
    The effect of reprocessing Polyamide 6 (PA6) has been studied in this paper. To simulate recycled PA, we reprocessed virgin PA through 5 cycles. The PA has been rheologically characterized after the various cycles of reprocessing in order to evaluate their corresponding properties and correlate them with the number of cycles undergone. In order to widen our injection simulation analysis by computer (CAE: Computer Aided Engineering) of these new materials, it was necessary to determine the viscosity using a mathematical model, in this case the Cross-WLF, to determine the relevant parameters. Our results show that viscosity decrease, as the number of reprocessing cycles increases.Peydro, MA.; Juárez Varón, D.; Crespo Amorós, JE.; Parres, F. (2011). Study of rheological behavior of reprocessing polyamide 6. Annals of The University of Oradea. 10(20):421-425. http://hdl.handle.net/10251/35902S421425102

    Design of innovation in a technical subject

    Full text link
    Copyright (2009) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in AIP Conf. Proc. 1181, 738 (2009) and may be found at http://dx.doi.org/10.1063/1.3273695.The greatest motivation found in the teaching of the subject Mechanical Technology is the ability to speak to students about manufacturing technologies. The main objective of learning in this subject is a global vision of the manufacturing process, and its optimization in terms of applicability to the real world. The best way for students to learn these concepts is for the teacher to explain them with a more global view aimed at reaching a comprehensive vision with a high degree of detail.Juárez Varón, D.; Peydro, MA.; Reig Pérez, MJ.; Parres, F. (2009). Design of innovation in a technical subject. American Institute of Physics (AIP). doi:10.1063/1.3273695

    Estudio de la miscibilidad de polímeros a través del análisis de la fractura

    Full text link
    La miscibilidad entre materiales es un campo de la ciencia de gran importancia ya que estos estudios en metales han permitido conseguir las diversas aleaciones que se utilizan a nivel industrial. Estos estudios se han trasladado al campo de los polímeros y existen múltiples estudios que tratan de ello, donde se utilizan técnicas analíticas de diversa sensibilidad para evaluar los efectos en las propiedades mecánicas, térmicas, reológicas de dichas mezclas. Por otro lado, la mecánica de la fractura es aquella parte de la ciencia de los materiales que analiza la superficie de fractura con el fin de vincular dicha superficie a unas condiciones de tensión y tipo de esfuerzo. Estos estudios se han aplicado enormemente en los materiales metálicos, siendo en menor número los que se pueden encontrar respecto materiales poliméricos. La información que puede aportar el estudio de las superficies de fractura solo poseen carácter cualitativo y no cuantitativo, pero la presencia de zonas lisas, rugosidades, desgarros y otros fenómenos permiten acotar las causas que han podido provocar dichas morfologías superficialePeydro, MA.; Parres, F.; Navarro Vidal, R.; Crespo Amorós, JE. (2013). Estudio de la miscibilidad de polímeros a través del análisis de la fractura. Compobell, S.L. http://hdl.handle.net/10251/73819

    Study of the thermal properties of Acrylonitrile Butadiene Styrene - High Impact Polystyrene blends with Styrene Ethylene Butylene Styrene

    Full text link
    [EN] A binary blend Acrylonitrile Butadiene Styrene ¿ High Impact Polystyrene (ABS-HIPS 50% wt) was prepared on a twin-screw extruder at 190-210 oC. The different properties were then analyzed using melt flow index (MFI), thermogravimetric analysis (TGA), and Fourier Transform Infrared spectroscopy (FTIR). FTIR analysis indicated heterogeneous distribution of the blend in injected pieces and SEM micrographs show heterogeneous distribution of both phase (ABS and HIPS). On the other hand, we have prepared ternary blends of ABS-HIPS-Styrene Ethylene Butylene Styrene (SEBS), varying the percentage of SEBS from 10 to 30 %wt using a twin screw extruder at 190-210oC. The addition of SEBS to the binary system (ABS-HIPS) allowed us to increase the ductile properties as well as reducing the viscosity.We would like to thank the Vice-Directorate of Research, Development and Innovation of the Polytechnic University of Valencia for the help granted to the project: “Ternary systems research applied to polymeric materials for the upgrading of waste styrene”, Ref: 20091056 within the program of First Projects of Investigation (PAID 06-09) where this work is framed.Peydro Rasero, MÁ.; Juárez Varón, D.; Sánchez Caballero, S.; Parres, F. (2013). Study of the thermal properties of Acrylonitrile Butadiene Styrene - High Impact Polystyrene blends with Styrene Ethylene Butylene Styrene. Annals of The University of Oradea. XXII(1):273-276. http://hdl.handle.net/10251/35953S273276XXII

    Los problemas en ingeniería

    Full text link
    [ES] La resolución de problemas constituye una de las facetas educativas que cualquier alumno suele relacionar con las enseñanzas técnicas. Ese reconocimiento suele también identificarse con listas interminables de problemas suministradas por el profesor o incluidas en monografías, en las que el alumno es incapaz de hallar una mínima relación con los problemas que acontecen en su quehacer diario o en la Ciencia real. Las conductas que desencadena en el profesor y en el alumno la resolución de problemas vienen a estar impregnadas de una serie de rutinas descontextualizadas, inalteradas década tras década y que promueven el aprendizaje memorístico más que la oportunidad de indagar en la comprensión del contenido científico. En este trabajo se expone cómo mejorar el proceso de resolución de problemas, y también se exponen indicaciones de como evaluar el aprendizaje.Sellés, M.; Pérez Bernabeu, E.; Sanchez-Caballero, S.; Crespo, J.; Parres, F. (2011). Los problemas en ingeniería. Instituto de Ciencias de la Educación de la Universidad de Alicante. 2317-2325. http://hdl.handle.net/10251/178197S2317232
    corecore