2,749 research outputs found
Photoelectron diffraction: from phenomenological demonstration to practical tool
The potential of photoelectron diffractionâexploiting the coherent interference of directly-emitted and elastically scattered components of the photoelectron wavefield emitted from a core level of a surface atom to obtain structural informationâwas first appreciated in the 1970s. The first demonstrations of the effect were published towards the end of that decade, but the method has now entered the mainstream armoury of surface structure determination. This short review has two objectives: First, to outline the way that the idea emerged and the way this evolved in my own collaboration with Neville Smith and his colleagues at Bell Labs in the early years: Second, to provide some insight into the current state-of-the art in application of (scanned-energy mode) photoelectron diffraction to address two key issue in quantitative surface structure determination, namely, complexity and precision. In this regard a particularly powerful aspect of photoelectron diffraction is its elemental and chemical-state specificity
The adsorption structure of furan on Pd(1 1 1)
The structure of molecular furan, C4H4O, on Pd(1 1 1) has been investigated by O K-edge near-edge X-ray absorption fine structure (NEXAFS) and C 1s scanned-energy mode photoelectron diffraction (PhD). NEXAFS shows the molecule to be adsorbed with the molecular plane close to parallel to the surface, a conclusion confirmed by the PhD analysis. Chemical-state specific C 1s PhD data were obtained for the two inequivalent C atoms in the furan, the α-C atoms adjacent to the O atom, and the ÎČ-C atoms bonded only to C atoms, but only the PhD modulations for the α-C emitters were of sufficiently large amplitude for detailed evaluation using multiple scattering calculations. This analysis shows the α-C atoms to be located approximately 0.6 Ă
off-atop surface Pd atoms with an associated CâPd bondlength of 2.13 ± 0.03 Ă
. Two alternative local geometries consistent with the data place the O atom in off-atop or near-hollow locations, and for each of these local structures there are two equally-possible registries relative to the fcc and hcp hollow sites. The results are in good agreement with earlier density functional theory calculations which indicate that the fcc and hcp registries are equally probable, but the PhD results fail to distinguish the two distinct local bonding geometries
Validation of the inverted adsorption structure for free-base tetraphenyl porphyrin on Cu(111)
Utilising normal incidence X-ray standing waves we rigourously scrutinise the âinverted modelâ as the adsorption structure of free-base tetraphenyl porphyrin on Cu(111). We demonstrate that the iminic N atoms are anchored at near-bridge adsorption sites on the surface displaced laterally by 1.1 ± 0.2 Ă
in excellent agreement with previously published calculations
A structural study of a C3H3 species coadsorbed with CO on Pd(1 1 1)
The combination of chemical-state-specific C 1s scanned-energy mode photoelectron diffraction (PhD) and O K-edge near-edge X-ray absorption fine structure (NEXAFS) has been used to determine the local adsorption geometry of the coadsorbed C3H3 and CO species formed on Pd(1 1 1) by dissociation of molecular furan. CO is found to adopt the same geometry as in the Pd(1 1 1)c(4 Ă 2)-CO phase, occupying the two inequivalent three-fold coordinated hollow sites with the CâO axis perpendicular to the surface. C3H3 is found to lie with its molecular plane almost parallel to the surface, most probably with the two âouterâ C atoms in equivalent off-atop sites, although the PhD analysis formally fails to distinguish between two distinct local adsorption sites
Identifying the Azobenzene/Aniline reaction intermediate on TiO2-(110) : a DFT Study
Density functional theory (DFT) calculations, both with and without dispersion corrections, have been performed to investigate the nature of the common surface reaction intermediate that has been shown to exist on TiO2(110) as a result of exposure to either azobenzene (C6H5NâNC6H5) or aniline (C6H5NH2). Our results confirm the results of a previous DFT study that dissociation of azobenzene into two adsorbed phenyl imide (C6H5N) fragments, as was originally proposed, is not energetically favorable. We also find that deprotonation of aniline to produce this surface species is even more strongly energetically disfavored. A range of alternative surface species has been considered, and while dissociation of azobenzene to form surface C6H4NH species is energetically favored, the same surface species cannot form from adsorbed aniline. On the contrary, adsorbed aniline is much the most stable surface species. Comparisons with experimental determinations of the local adsorption site, the TiâN bond length, the molecular orientation, and the associated C 1s and N 1s photoelectron core level shifts are all consistent with the DFT results for adsorbed aniline and are inconsistent with other adsorbed species considered. Possible mechanisms for the hydrogenation of azobenzene required to produce this surface species are discussed
SLaDe: A Portable Small Language Model Decompiler for Optimized Assembly
Decompilation is a well-studied area with numerous high-quality tools
available. These are frequently used for security tasks and to port legacy
code. However, they regularly generate difficult-to-read programs and require a
large amount of engineering effort to support new programming languages and
ISAs. Recent interest in neural approaches has produced portable tools that
generate readable code. However, to-date such techniques are usually restricted
to synthetic programs without optimization, and no models have evaluated their
portability. Furthermore, while the code generated may be more readable, it is
usually incorrect. This paper presents SLaDe, a Small Language model Decompiler
based on a sequence-to-sequence transformer trained over real-world code. We
develop a novel tokenizer and exploit no-dropout training to produce
high-quality code. We utilize type-inference to generate programs that are more
readable and accurate than standard analytic and recent neural approaches.
Unlike standard approaches, SLaDe can infer out-of-context types and unlike
neural approaches, it generates correct code. We evaluate SLaDe on over 4,000
functions from ExeBench on two ISAs and at two optimizations levels. SLaDe is
up to 6 times more accurate than Ghidra, a state-of-the-art,
industrial-strength decompiler and up to 4 times more accurate than the large
language model ChatGPT and generates significantly more readable code than
both
- âŠ