13,009 research outputs found

    Reflection nebulae in the Galactic Center: the case for soft X-ray imaging polarimetry

    Get PDF
    The origin of irradiation and fluorescence of the 6.4 keV bright giant molecular clouds surrounding Sgr A*, the central supermassive black hole of our Galaxy, remains enigmatic. Testing the theory of a past active period of Sgr A* requires X-ray polarimetry. In this paper, we show how modern imaging polarimeters could revolutionize our understanding of the Galactic Center. Through Monte Carlo modeling, we produce a 4-8 keV polarization map of the Galactic Center, focusing on the polarimetric signature produced by Sgr B1, Sgr B2, G0.11-0.11, Bridge E, Bridge D, Bridge B2, MC2, MC1, Sgr C3, Sgr C2, and Sgr C1. We estimate the resulting polarization, include polarized flux dilution by the diffuse plasma emission detected toward the GC, and simulate the polarization map that modern polarimetric detectors would obtain assuming the performances of a mission prototype. The eleven reflection nebulae investigated in this paper present a variety of polarization signatures, ranging from nearly unpolarized to highly polarized (about 77%) fluxes. A major improvement in our simulation is the addition of a diffuse, unpolarized plasma emission that strongly impacts soft X-ray polarized fluxes. The dilution factor is in the range 50% - 70%, making the observation of the Bridge structure unlikely even in the context of modern polarimetry. The best targets are the Sgr B and Sgr C complexes, and the G0.11-0.11 cloud. An exploratory observation of a few hundred kilo-seconds of the Sgr B complex would allow a significant detection of the polarization and be sufficient to derive hints on the primary source of radiation. A more ambitious program (few Ms) of mapping the giant molecular clouds could then be carried out to probe with great precision the turbulent history of Sgr A*, and place important constraints on the composition and three-dimensional position of the surrounding gas.Comment: 7 pages, 3 figures, 2 tables, accepted for publication in A&

    X-ray polarimetric signatures induced by spectral variability in the framework of the receding torus model

    Full text link
    Obscuring circumnuclear dust is a well-established constituent of active galactic nuclei (AGN). Traditionally referred to as the receding dusty torus, its inner radius and angular extension should depend on the photo-ionizing luminosity of the central source. Using a Monte Carlo approach, we simulate the radiative transfer between the multiple components of an AGN adopting model constraints from the bright Seyfert galaxy NGC 4151. We compare our model results to the observed near-IR to UV polarization of the source and predict its X-ray polarization. We find that the 2-8 keV polarization fraction of a standard AGN model varies from less then a few percent along polar viewing angles up to tens of percent at equatorial inclinations. At viewing angles around the type-1/type-2 transition the X-ray polarization variability differs between a static or a receding torus scenario. In the former case, the expected 2-8 keV polarization of NGC 4151 is found to be 1.21% +/- 0.34% with a constant polarization position angle, while in the later scenario it varies from 0.1% to 6% depending on the photon index of the primary radiation. Additionally, an orthogonal rotation of the polarization position angle with photon energy appears for very soft primary spectra. Future X-ray polarimetry missions will be able to test if the receding model is valid for Seyfert galaxies seen at a viewing angle close to the torus horizon. The overall stability of the polarization position angle for photon indexes softer than {\Gamma} = 1.5 ensures that reliable measurements of X-ray polarization are possible. We derive a long-term observational strategy for NGC 4151 assuming observations with a small to medium-size X-ray polarimetry satellite.Comment: 10 pages, 8 Figures, accepted for publication in A&

    Fine Structure of the 1s3p ^3P_J Level in Atomic ^4He: Theory and Experiment

    Full text link
    We report on a theoretical calculation and a new experimental determination of the 1s3p ^3P_J fine structure intervals in atomic ^4He. The values from the theoretical calculation of 8113.730(6) MHz and 658.801(6) MHz for the nu_{01} and nu_{12} intervals, respectively, disagree significantly with previous experimental results. However, the new laser spectroscopic measurement reported here yields values of 8113.714(28) MHz and 658.810(18) MHz for these intervals. These results show an excellent agreement with the theoretical values and resolve the apparent discrepancy between theory and experiment.Comment: 9 pages, 3 figure

    Specsim: The MIRI Medium Resolution Spectrometer Simulator

    Get PDF
    MIRI, the Mid-InfraRed Instrument, is one of four instruments being built for the James Webb Space Telescope, and is developed jointly between an EuropeanConsortium and the US. In this paper we present a software data simulator for one of MIRI's four instruments: the Integral Field Unit (IFU) Medium Resolution Spectrometer (MIRI-MRS), the first mid-infrared IFU spectrograph, and one of the first IFUs to be used in a space mission. To give the MIRI community a preview of the properties of the MIRI-MRS data products before the telescope is operational, the Specsim tool has been developed to model, in software, the operation of the spectrometer. Specsim generates synthetic data frames approximating those which will be taken by the instrument in orbit. The program models astronomical sources and generates detector frames using the predicted and measured optical properties of the telescope and MIRI. These frames can then be used to illustrate and inform a range of operational activities, including data calibration strategies and the development and testing of the data reduction software for the MIRI-MRS. Specsim will serve as a means of communication between the many consortium members by providing a way to easily illustrate the performance of the spectrometer under different circumstances, tolerances of components and design scenarios.Comment: 8 pages, 5 figures; A high resolution version is available at http://www.roe.ac.uk/~npfl/Publications/lgw+06.ps.gz (Changed URL of high-res version

    Infrared Observations of AGN

    Full text link
    We present results from an imaging and spectroscopic study of the dust properties of Seyfert galaxies in the 1-10um range. The data are compared to state of the art models of torus emission to constrain geometrical and physical properties of the obscuring medium.Comment: 2 pages, to appear in the IAU Symp.No.222 proceedings:"The Interplay among Black Holes, Stars and ISM in Galactic Nuclei", Gramado, Brazil, March 1-5, 200

    Parametrização do modelo CANEGRO para as cultivares brasileiras de cana-de-açúcar.

    Get PDF
    O objetivo do presente trabalho foi a parametrização do modelo CANEGRO para a as cultivares brasileiras IAC 91-1099 e SP 89 1115.Trabalho apresentado na V Mostra de Trabalhos de Estagiários e Bolsistas, Campinas, out. 2009

    Avaliação do desempenho de um modelo de estimativa de saldo de radiação em algumas culturas.

    Get PDF
    Avaliou-se o desempenho do método de estimativa do saldo de radiação proposto por ALLEN, 1998, em experimentos de culturas de girassol, amendoim, café, limão e grama, através de regressões lineares com base nos indicadores estatísticos coeficiente de correlação r?, índice de Willmott ?d? e índice de desempenho ?c?. Segundo os critérios de avaliação do índice ?c?, o método proposto por ALLEN, 1998 representa de forma satisfatória os dados de saldo de radiação, sendo obtidos os desempenhos equivalentes a 0,79 (muito bom) para as culturas de girassol e grama e de 0,96; 0,86 e 0,88 (ótimo) para as culturas de amendoim, café e limão, respectivamente.CBA 2009

    Interplay between the magnetic anisotropy contributions of Cobalt nanowires

    Get PDF
    We report on the magnetic properties and the crystallographic structure of the cobalt nanowire arrays as a function of their nanoscale dimensions. X-ray diffraction measurements show the appearance of an in-plane HCP-Co phase for nanowires with 50 nm diameter, suggesting a partial reorientation of the magnetocrystalline anisotropy axis along the membrane plane with increasing pore diameter. No significant changes in the magnetic behavior of the nanowire system are observed with decreasing temperature, indicating that the effective magnetoelastic anisotropy does not play a dominant role in the remagnetization processes of individual nanowires. An enhancement of the total magnetic anisotropy is found at room temperature with a decreasing nanowire diameter-to-length ratio (d/L), a result that is quantitatively analyzed on the basis of a simplified shape anisotropy model.Comment: 8 pages, 4 figure

    Calibrated quantum thermometry in cavity optomechanics

    Full text link
    Cavity optomechanics has achieved the major breakthrough of the preparation and observation of macroscopic mechanical oscillators in peculiarly quantum states. The development of reliable indicators of the oscillator properties in these conditions is important also for applications to quantum technologies. We compare two procedures to infer the oscillator occupation number, minimizing the necessity of system calibrations. The former starts from homodyne spectra, the latter is based on the measurement of the motional sidebands asymmetry in heterodyne spectra. Moreover, we describe and discuss a method to control the cavity detuning, that is a crucial parameter for the accuracy of the latter, intrinsically superior procedure
    corecore