5,360 research outputs found
High Resolution Imaging of the Mitral Valve in the Natural State with 7 Tesla MRI
Imaging techniques of the mitral valve have improved tremendously during the last decade, but challenges persist. The delicate changes in annulus shape and papillary muscle position throughout the cardiac cycle have significant impact on the stress distribution in the leaflets and chords, thus preservation of anatomically accurate positioning is critical. The aim of this study was to develop an in vitro method and apparatus for obtaining high-resolution 3D MRI images of porcine mitral valves in both the diastolic and systolic configurations with physiologically appropriate annular shape, papillary muscle positions and orientations, specific to the heart from which the valve was harvested. Positioning and mounting was achieved through novel, customized mounting hardware consisting of papillary muscle and annulus holders with geometries determined via pre-mortem ultrasonic intra-valve measurements. A semi-automatic process was developed and employed to tailor Computer Aided Design models of the holders used to mount the valve. All valve mounting hardware was 3D printed using a stereolithographic printer, and the material of all fasteners used were brass for MRI compatibility. The mounted valves were placed within a clear acrylic case, capable of holding a zero-pressure and pressurized liquid bath of a MRI-compatible fluid. Obtaining images from the valve submerged in liquid fluid mimics the natural environment surrounding the valve, avoiding artefacts due to tissue surface tension mismatch and gravitational impact on tissue shape when not neutrally buoyant. Fluid pressure was supplied by reservoirs held at differing elevations and monitored and controlled to within ±1mmHg to ensure that the valves remained steady. The valves were scanned in a 7 Tesla MRI system providing a voxel resolution of at least 80μm. The systematic approach produced 3D datasets of high quality which, when combined with physiologically accurate positioning by the apparatus, can serve as an important input for validated computational models
Intermittent random walks for an optimal search strategy: One-dimensional case
We study the search kinetics of an immobile target by a concentration of
randomly moving searchers. The object of the study is to optimize the
probability of detection within the constraints of our model. The target is
hidden on a one-dimensional lattice in the sense that searchers have no a
priori information about where it is, and may detect it only upon encounter.
The searchers perform random walks in discrete time n=0,1,2, ..., N, where N is
the maximal time the search process is allowed to run. With probability \alpha
the searchers step on a nearest-neighbour, and with probability (1-\alpha) they
leave the lattice and stay off until they land back on the lattice at a fixed
distance L away from the departure point. The random walk is thus intermittent.
We calculate the probability P_N that the target remains undetected up to the
maximal search time N, and seek to minimize this probability. We find that P_N
is a non-monotonic function of \alpha, and show that there is an optimal choice
\alpha_{opt}(N) of \alpha well within the intermittent regime, 0 <
\alpha_{opt}(N) < 1, whereby P_N can be orders of magnitude smaller compared to
the "pure" random walk cases \alpha =0 and \alpha = 1.Comment: 19 pages, 5 figures; submitted to Journal of Physics: Condensed
Matter; special issue on Chemical Kinetics Beyond the Textbook: Fluctuations,
Many-Particle Effects and Anomalous Dynamics, eds. K.Lindenberg, G.Oshanin
and M.Tachiy
Metal-insulator transitions: Influence of lattice structure, Jahn-Teller effect, and Hund's rule coupling
We study the influence of the lattice structure, the Jahn-Teller effect and
the Hund's rule coupling on a metal-insulator transition in AnC60 (A= K, Rb).
The difference in lattice structure favors A3C60 (fcc) being a metal and A4C60
(bct) being an insulator, and the coupling to Hg Jahn-Teller phonons favors
A4C60 being nonmagnetic. The coupling to Hg (Ag) phonons decreases (increases)
the value Uc of the Coulomb integral at which the metal-insulator transition
occurs. There is an important partial cancellation between the Jahn-Teller
effect and the Hund's rule coupling.Comment: 4 pages, RevTeX, 3 eps figure, additional material available at
http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/fullerene
ALMA polarimetric studies of rotating jet/disk systems
We have recently obtained polarimetric data at mm wavelengths with ALMA for
the young systems DG Tau and CW Tau, for which the rotation properties of jet
and disk have been investigated in previous high angular resolution studies.
The motivation was to test the models of magneto-centrifugal launch of jets via
the determination of the magnetic configuration at the disk surface. The
analysis of these data, however, reveals that self-scattering of dust thermal
radiation dominates the polarization pattern. It is shown that even if no
information on the magnetic field can be derived in this case, the polarization
data are a powerful tool for the diagnostics of the properties and the
evolution of dust in protoplanetary disks.Comment: 9 pages, 3 figures, to appear in "Jet Simulations, Experiments and
Theory. Ten years after JETSET, what is next ?", C. Sauty ed., Springer
Natur
Electrical resistivity at large temperatures: Saturation and lack thereof
Many transition metal compounds show saturation of the resistivity at high
temperatures, T, while the alkali-doped fullerenes and the high-Tc cuprates are
usually considered to show no saturation. We present a model of transition
metal compounds, showing saturation, and a model of alkali-doped fullerenes,
showing no saturation. To analyze the results we use the f-sum rule, which
leads to an approximate upper limit for the resistivity at large T. For some
systems and at low T, the resistivity increases so rapidly that this upper
limit is approached for experimental T. The resistivity then saturates. For a
model of transition metal compounds with weakly interacting electrons, the
upper limit corresponds to a mean free path consistent with the Ioffe-Regel
condition. For a model of the high Tc cuprates with strongly interacting
electrons, however, the upper limit is much larger than the Ioffe-Regel
condition suggests. Since this limit is not exceeded by experimental data, the
data are consistent with saturation also for the cuprates. After "saturation"
the resistivity usually grows slowly. For the alkali-doped fullerenes,
"saturation" can be considered to have happened already for T=0, due to
orientational disorder. For these systems, however, the resistivity grows so
rapidly after "saturation" that this concept is meaningless. This is due to the
small band width and to the coupling to the level energies of the important
phonons.Comment: 22 pages, RevTeX, 19 eps figures, additional material available at
http://www.mpi-stuttgart.mpg.de/andersen/fullerene
Structure and properties of a novel fulleride Sm6C60
A novel fulleride Sm6C60 has been synthesized using high temperature solid
state reaction. The Rietveld refinement on high resolution synchrotron X-ray
powder diffraction data shows that Sm6C60 is isostructural with body-centered
cubic A6C60 (A=K, Ba). Raman spectrum of Sm6C60 is similar to that of Ba6C60,
and the frequencies of two Ag modes in Sm6C60 are nearly the same as that of
Ba6C60, suggesting that Sm is divalent and hybridization between C60 molecules
and the Sm atom could exist in Sm6C60. Resistivity measurement shows a weak
T-linear behavior above 180 K, the transport at low temperature is mainly
dominated by granular-metal theory.Comment: 9 pages, 3 figures, submitted to Phys. Rev. B (March 12, 1999
Reflected Spectra and Albedos of Extrasolar Giant Planets I: Clear and Cloudy Atmospheres
The reflected spectra of extrasolar giant planets are primarily influenced by
Rayleigh scattering, molecular absorption, and atmospheric condensates. We
present model geometric albedo and phase integral spectra and Bond albedos for
planets and brown dwarfs with masses between 0.8 and 70 Jupiter masses.
Rayleigh scattering predominates in the blue while molecular absorption removes
most red and infrared photons. Thus cloud-free atmospheres, found on giant
planets with effective temperatures exceeding about 400 K, are quite dark in
reflected light beyond 0.6 microns. In cooler atmospheres first water clouds
and then other condensates provide a bright reflecting layer. Only planets with
cloudy atmospheres will be detectable in reflected light beyond 1 micron.
Thermal emission dominates the near-infrared for warm objects with clear
atmospheres. However the presence of other condensates, not considered here,
may brighten some planets in reflected near-infrared light and darken them in
the blue and UV. Bond albedos, the ratio of the total reflected to incident
power, are sensitive to the spectral type of the primary. Most incident photons
from early type stars will be Rayleigh scattered, while most incident photons
from late type stars will be absorbed. The Bond albedo of a given planet thus
may range from 0.4 to 0.05, depending on the primary type. Condensation of a
water cloud increases the Bond albedo of a given planet by up to a factor of
two. The spectra of cloudy planets are strongly influenced by poorly
constrained cloud microphysical properties, particularly particle size and
supersaturation. Both Bond and geometric albedos are comparatively less
sensitive to variations in planet mass and effective temperature.Comment: AASTeX; 23 pages, 2 tables, 18 figures; ApJ in press; typo fixe
- …