52 research outputs found

    Turbulence with combined stratification and rotation: Limitations of Corrsin's hypothesis

    Get PDF
    The properties of one-particle and particle-pair diffusion in rotating and stratified turbulence are studied by applying the rapid distortion theory to a kinematic simulation of the Boussinesq equation with a Coriolis term. We discuss the simplified Corrsin hypothesis and restrict the validity of its predictions to pure rotation. We emphasize the existence of two regimes driven by very different physics when rotation is present. Particular attention is given to the locality-in-scale hypothesis for two-particle diffusion in both the horizontal and the vertical directions

    Kinematic simulation for stably stratified and rotating turbulence

    Get PDF
    The properties of one-particle and particle-pair diffusion in rotating and stratified turbulence are studied by applying the rapid distortion theory (RDT) to a kinematic simulation (KS) of the Boussinesq equation with a Coriolis term. Scalings for one- and two-particle horizontal and vertical diffusions in purely rotating turbulence are proposed for small Rossby numbers. Particular attention is given to the locality-in-scale hypothesis for two-particle diffusion in purely rotating turbulence both in the horizontal and the vertical directions. It is observed that both rotation and stratification decrease the pair diffusivity and improve the validity of the locality-in-scale hypothesis. In the case of stratification the range of scales over which the locality-in-scale hypothesis is observed is increased. It is found that rotation decreases the diffusion in the horizontal direction as well as, though to a much lesser extent, in the vertical direction

    Lattice Boltzmann Method simulations of high Reynolds number flows past porous obstacles

    Get PDF
    Lattice Boltzmann Method (LBM) simulations for turbulent flows over fractal and non-fractal obstacles are presented. The wake hydrodynamics are compared and discussed in terms of flow relaxation, Strouhal numbers and wake length for different Reynolds numbers. Three obstacle topologies are studied, Solid (SS), Porous Regular (PR) and Porous Fractal (FR). In particular, we observe that the oscillation present in the case of the solid square can be annihilated or only pushed downstream depending on the topology of the porous obstacle. The LBM is implemented over a range of four Reynolds numbers from 12,352 to 49,410. The suitability of LBM for these high Reynolds number cases is studied. Its results are compared to available experimental data and published literature. Compelling agreements between all three tested obstacles show a significant validation of LBM as a tool to investigate high Reynolds number flows in complex geometries. This is particularly important as the LBM method is much less time consuming than a classical Navier–Stokes equation-based computing method and high Reynolds numbers need to be achieved with enough details (i.e., resolution) to predict for example canopy flows

    An approach to anomalous diffusion in the n-dimensional space generated by a self-similar Laplacian

    Full text link
    We analyze a quasi-continuous linear chain with self-similar distribution of harmonic interparticle springs as recently introduced for one dimension (Michelitsch et al., Phys. Rev. E 80, 011135 (2009)). We define a continuum limit for one dimension and generalize it to n=1,2,3,..n=1,2,3,.. dimensions of the physical space. Application of Hamilton's (variational) principle defines then a self-similar and as consequence non-local Laplacian operator for the nn-dimensional space where we proof its ellipticity and its accordance (up to a strictly positive prefactor) with the fractional Laplacian −(−Δ)α2-(-\Delta)^\frac{\alpha}{2}. By employing this Laplacian we establish a Fokker Planck diffusion equation: We show that this Laplacian generates spatially isotropic L\'evi stable distributions which correspond to L\'evi flights in nn-dimensions. In the limit of large scaled times ∼t/rα>>1\sim t/r^{\alpha} >>1 the obtained distributions exhibit an algebraic decay ∼t−nα→0\sim t^{-\frac{n}{\alpha}} \rightarrow 0 independent from the initial distribution and spacepoint. This universal scaling depends only on the ratio n/αn/\alpha of the dimension nn of the physical space and the L\'evi parameter α\alpha.Comment: Submitted manuscrip
    • …
    corecore