2,293 research outputs found

    Cosmogenic neutron production at Daya Bay

    Get PDF
    Neutrons produced by cosmic ray muons are an important background for underground experiments studying neutrino oscillations, neutrinoless double beta decay, dark matter, and other rare-event signals. A measurement of the neutron yield in the three different experimental halls of the Daya Bay Reactor Neutrino Experiment at varying depth is reported. The neutron yield in Daya Bay’s liquid scintillator is measured to be Y_n=(10.26±0.86)×10^(−5), (10.22±0.87)×10^(−5), and (17.03±1.22)×10^(−5)  μ^(−1) g^(−1) cm^2 at depths of 250, 265, and 860 meters-water-equivalent. These results are compared to other measurements and the simulated neutron yield in FLUKA and GEANT4. A global fit including the Daya Bay measurements yields a power law coefficient of 0.77±0.03 for the dependence of the neutron yield on muon energy

    New measurement of θ_(13) via neutron capture on hydrogen at Daya Bay

    Get PDF
    This article reports an improved independent measurement of neutrino mixing angle θ_(13) at the Daya Bay Reactor Neutrino Experiment. Electron antineutrinos were identified by inverse β-decays with the emitted neutron captured by hydrogen, yielding a data set with principally distinct uncertainties from that with neutrons captured by gadolinium. With the final two of eight antineutrino detectors installed, this study used 621 days of data including the previously reported 217-day data set with six detectors. The dominant statistical uncertainty was reduced by 49%. Intensive studies of the cosmogenic muon-induced ^9Li and fast neutron backgrounds and the neutron-capture energy selection efficiency, resulted in a reduction of the systematic uncertainty by 26%. The deficit in the detected number of antineutrinos at the far detectors relative to the expected number based on the near detectors yielded sin^22θ_(13) =0.071±0.011in the three-neutrino-oscillation framework. The combination of this result with the gadolinium-capture result is also reported

    Study of the wave packet treatment of neutrino oscillation at Daya Bay

    Get PDF
    The disappearance of reactor ν¯e observed by the Daya Bay experiment is examined in the framework of a model in which the neutrino is described by a wave packet with a relative intrinsic momentum dispersion σ_(rel). Three pairs of nuclear reactors and eight antineutrino detectors, each with good energy resolution, distributed among three experimental halls, supply a high-statistics sample of ν¯e acquired at nine different baselines. This provides a unique platform to test the effects which arise from the wave packet treatment of neutrino oscillation. The modified survival probability formula was used to fit Daya Bay data, providing the first experimental limits: 2.38×10^(-17) < σ_(rel) < 0.23. Treating the dimensions of the reactor cores and detectors as constraints, the limits are improved: 10^(-(14) ≲ σ_(rel) < 0.23, and an upper limit of σ_ (rel) < 0.20 (which corresponds to σ_x ≳ 10^(-11) cm) is obtained. All limits correspond to a 95% C.L. Furthermore, the effect due to the wave packet nature of neutrino oscillation is found to be insignificant for reactor antineutrinos detected by the Daya Bay experiment thus ensuring an unbiased measurement of the oscillation parameters sin^2 2θ_(13) and Δm^2_(32) within the plane wave model

    New Measurement of Antineutrino Oscillation with the Full Detector Configuration at Daya Bay

    Get PDF
    We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×10^5 GW_(th) ton  days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six ^(241)Am−^(13)C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of sin 2^2θ_(13) and |Δm^2_(ee)| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave sin^2 2θ_(13)=0.084±0.005 and |Δm^2_(ee)|=(2.42±0.11)×10^(−3) eV^2 in the three-neutrino framework

    Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    Get PDF
    This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GW_(th) nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55±0.04) ×10^(−18)  cm^2  GW^(−1)  day^(−1) or (5.92±0.14) ×10^(−43)  cm^2  fission^(−1). This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946±0.022 (0.991±0.023) relative to the flux predicted with the Huber−Mueller (ILL-Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ∼4σ between 4–6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions

    Two proposals for testing quantum contextuality of continuous-variable states

    Full text link
    We investigate the violation of non-contextuality by a class of continuous variable states, including variations of entangled coherent states (ECS's) and a two-mode continuous superposition of coherent states. We generalise the Kochen-Specker (KS) inequality discussed in A. Cabello, Phys. Rev. Lett. {\bf 101}, 210401 (2008) by using effective bidimensional observables implemented through physical operations acting on continuous variable states, in a way similar to an approach to the falsification of Bell-CHSH inequalities put forward recently. We test for state-independent violation of KS inequalities under variable degrees of state entanglement and mixedness. We then demonstrate theoretically the violation of a KS inequality for any two-mode state by using pseudo-spin observables and a generalized quasi-probability function.Comment: 7 pages, 2 figures, RevTeX
    • …
    corecore