5,524 research outputs found
Cooperative dynamics in doped manganite films: phonon anomalies in the ferromagnetic state
We present optical measurements of phononic excitations in
LaCaMnO (LCMO) and LaSrMnO (LSMO)
thin films covering the full temperature range from the metallic ferromagnetic
to the insulating paramagnetic phase. All eight phonons expected for the
Rc symmetry in LSMO and 17 out of the expected 25 phonons for the Pnma
symmetry in LCMO have been determined. Close to the
ferromagnetic-to-paramagnetic transition both compounds reveal an anomalous
behavior but with different characteristics. Anomalies in the phononic spectra
are a manifestation of the coupling of lattice degrees of freedom (DOF) to
electronic DOF. Specifically, the low-frequency external group proves to be an
indicator for lattice modifications induced by electronic correlations. The
enhanced electron-phonon coupling in LCMO is responsible for Fano-like
interference effects of distinct phonon modes with electronic continuum
excitations: we observe asymmetric phonon line shapes, mode splitting and
spectral weight transfer between modes.Comment: 10 pages, 10 figure
Large and Small Polaron Excitations in La2/3(Sr/Ca)1/3MnO3 Films
We present detailed optical measurements of the mid-infrared (MIR)
excitations in thin films of La2/3Sr1/3MnO3 (LSMO) and La2/3Ca1/3MnO3 (LCMO)
across the magnetic transition. The shape of the excitation at about 0.2 eV in
both samples is analyzed in terms of polaron models. We propose to identify the
MIR resonance in LSMO as the excitation of large polarons and that in LCMO as a
small polaron excitation. A scaling behavior for the low-energy side of the
polaronic MIR resonance in LSMO is established
Spin-phonon coupling in antiferromagnetic chromium spinels
The temperature dependence of eigenfrequencies and intensities of the IR
active modes has been investigated for the antiferromagnetic chromium spinel
compounds CdCr2O4, ZnCr2O4, ZnCr2S4, ZnCr2Se4, and HgCr2S4 by IR spectroscopy
for temperatures from 5 K to 300 K. At the transition into the magnetically
ordered phases, and driven by spin-phonon coupling, most compounds reveal
significant splittings of the phonon modes. This is true for geometrically
frustrated CdCr2O4, and ZnCr2O4, for bond frustrated ZnCr2S4 and for ZnCr2Se4,
which also is bond frustrated, but dominated by ferromagnetic exchange. The
pattern of splitting is different for the different compounds and crucially
depends on the nature of frustration and of the resulting spin order. HgCr2S4,
which is almost ferromagnetic, exhibits no splitting of the eigenfrequencies,
but shows significant shifts due to ferromagnetic spin fluctuations.Comment: 15 pages, 6 figure
Coupling of phonons and electromagnons in GdMnO_3
The infrared and Terahertz properties of GdMnO_3 have been investigated as
function of temperature and magnetic field, with special emphasis on the phase
boundary between the incommensurate and the canted antiferromagnetic
structures. The heterogeneous incommensurate phase reveals strong
magnetodielectric effects, characterized by significant magnetoelectric
contributions to the static dielectric permittivity and by the existence of
electrically excited magnons (electromagnons). In the commensurate canted
antiferromagnetic phase the magnetoelectric contributions to the dielectric
constant and electromagnons are suppressed. The corresponding spectral weight
is transferred to the lowest lattice vibration demonstrating the strong
coupling of phonons with electromagnons.Comment: 5 pages, 4 figure
Electronic and phonon excitations in {\alpha}-RuCl
We report on THz, infrared reflectivity and transmission experiments for wave
numbers from 10 to 8000 cm ( 1 meV - 1 eV) and for temperatures
from 5 to 295 K on the Kitaev candidate material {\alpha}-RuCl. As reported
earlier, the compound under investigation passes through a first-order
structural phase transition, from a monoclinic high-temperature to a
rhombohedral low-temperature phase. The phase transition shows an extreme and
unusual hysteretic behavior, which extends from 60 to 166 K. In passing this
phase transition, in the complete frequency range investigated we found a
significant reflectance change, which amounts almost a factor of two. We
provide a broadband spectrum of dielectric constant, dielectric loss and
optical conductivity from the THz to the mid infrared regime and study in
detail the phonon response and the low-lying electronic density of states. We
provide evidence for the onset of an optical energy gap, which is of order 200
meV, in good agreement with the gap derived from measurements of the DC
electrical resistivity. Remarkably, the onset of the gap exhibits a strong blue
shift on increasing temperatures.Comment: 18 pages, 7 figure
On Pebble Automata for Data Languages with Decidable Emptiness Problem
In this paper we study a subclass of pebble automata (PA) for data languages
for which the emptiness problem is decidable. Namely, we introduce the
so-called top view weak PA. Roughly speaking, top view weak PA are weak PA
where the equality test is performed only between the data values seen by the
two most recently placed pebbles. The emptiness problem for this model is
decidable. We also show that it is robust: alternating, nondeterministic and
deterministic top view weak PA have the same recognition power. Moreover, this
model is strong enough to accept all data languages expressible in Linear
Temporal Logic with the future-time operators, augmented with one register
freeze quantifier.Comment: An extended abstract of this work has been published in the
proceedings of the 34th International Symposium on Mathematical Foundations
of Computer Science (MFCS) 2009}, Springer, Lecture Notes in Computer Science
5734, pages 712-72
Unusual Non-Fermi Liquid Behavior of CeLaNiGe Analyzed in a Single Impurity Anderson Model with Crystal Field Effects
CeNiGe exhibits unusual non-Fermi liquid behavior with the largest
ever recorded value of the electronic specific heat
JKmol without showing any evidence of magnetic order. Specific
heat measurements show that the logarithmic increase of the Sommerfeld
coefficient flattens off below 200 mK. In marked contrast, the local
susceptibility levels off well above 200 mK and already becomes
constant below 1 K. Furthermore, the entropy reaches 2ln2 below 20 K
corresponding to a four level system. An analysis of and was
performed in terms of an single impurity Anderson model with
additional crystal electric field (CEF) splitting. Numerical renormalization
group calculations point to a possible consistent description of the different
low temperature scales in and stemming from the
interplay of Kondo effect and crystal field splitting.Comment: 2 pages, 2 figure
Correlation between magnetic and transport properties of phase separated LaCaMnO
The effect of low magnetic fields on the magnetic and electrical transport
properties of polycrystalline samples of the phase separated compound
LaCaMnO is studied. The results are interpreted in the
framework of the field induced ferromagnetic fraction enlargement mechanism. A
fraction expansion coefficient af, which relates the ferromagnetic fraction f
with the applied field H, was obtained. A phenomenological model to understand
the enlargement mechanism is worked out.Comment: 3 pages, 3 figures, presented at the Fifth LAW-MMM, to appear in
Physica B, Minor change
Broadband dielectric response of CaCu3Ti4O12: From dc to the electronic transition regime
We report on phonon properties and electronic transitions in CaCu3Ti4O12, a
material which reveals a colossal dielectric constant at room temperature
without any ferroelectric transition. The results of far- and mid-infrared
measurements are compared to those obtained by broadband dielectric and
millimeter-wave spectroscopy on the same single crystal. The unusual
temperature dependence of phonon eigenfrequencies, dampings and ionic plasma
frequencies of low lying phonon modes are analyzed and discussed in detail.
Electronic excitations below 4 eV are identified as transitions between full
and empty hybridized oxygen-copper bands and between oxygen-copper and
unoccupied Ti 3d bands. The unusually small band gap determined from the
dc-conductivity (~200 meV) compares well with the optical results.Comment: 7 pages, 8 figure
- …