185 research outputs found

    Atomic manipulation of the gap in Bi2_{2}Sr2_{2}CaCu2_{2}O8+x_{8+x}

    Full text link
    Single atom manipulation within doped correlated electron systems would be highly beneficial to disentangle the influence of dopants, structural defects and crystallographic characteristics on their local electronic states. Unfortunately, their high diffusion barrier prevents conventional manipulation techniques. Here, we demonstrate the possibility to reversibly manipulate select sites in the optimally doped high temperature superconductor Bi2_{2}Sr2_{2}CaCu2_{2}O8+x_{8+x} using the local electric field of the tip. We show that upon shifting individual Bi atoms at the surface, the spectral gap associated with superconductivity is seen to reversibly change by as much as 15 meV (~5% of the total gap size). Our toy model that captures all observed characteristics suggests the field induces lateral movement of point-like objects that create a local pairing potential in the CuO2 plane.Comment: Published in Science, this is the originally submitted manuscript prior to changes during the review proces

    Direct Evidence for a Magnetic f-electron Mediated Cooper Pairing Mechanism of Heavy Fermion Superconductivity in CeCoIn5

    Get PDF
    To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high temperature superconductivity. Magnetically mediated Cooper pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference (QPI) imaging, to reveal quantitatively the momentum-space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands Ekα,βE_k^{\alpha,\beta} with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5, then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by the f-electron magnetism.Comment: 19 pages, 4 figures, Supplementary Information: 31 pages, 5 figure

    The cleavage surface of the BaFe_(2-x)Co_(x)As_(2) and Fe_(y)Se_(1-x)Te_(x) superconductors: from diversity to simplicity

    Full text link
    We elucidate the termination surface of cleaved single crystals of the BaFe_(2-x)Co_(x)As_(2) and Fe_(y)Se_(1-x)Te_(x) families of the high temperature iron based superconductors. By combining scanning tunneling microscopic data with low energy electron diffraction we prove that the termination layer of the Ba122 systems is a remnant of the Ba layer, which exhibits a complex diversity of ordered and disordered structures. The observed surface topographies and their accompanying superstructure reflections in electron diffraction depend on the cleavage temperature. In stark contrast, Fe_(y)Se_(1-x)Te_(x) possesses only a single termination structure - that of the tetragonally ordered Se_(1-x)Te_(x) layer.Comment: 4 pages, 4 figure

    Non-gapped Fermi surfaces, quasiparticles and the anomalous temperature dependence of the near-EFE_F electronic states in the CMR oxide La2−2x_{2-2x}Sr1+2x_{1+2x}Mn2_2O7_7 with x=0.36x=0.36

    Full text link
    After years of research into colossal magnetoresistant (CMR) manganites using bulk techniques, there has been a recent upsurge in experiments directly probing the electronic states at or near the surface of the bilayer CMR materials La2−2x_{2-2x}Sr1+2x_{1+2x}Mn2_2O7_7 using angle-resolved photoemission or scanning probe microscopy. Here we report new, temperature dependent, angle resolved photoemission data from single crystals with a doping level of x=0.36x=0.36. The first important result is that there is no sign of a pseudogap in the charge channel of this material for temperatures below the Curie temperature TCT_C. The second important result concerns the temperature dependence of the electronic states. The temperature dependent changes in the Fermi surface spectra both at the zone face and zone diagonal regions in kk-space indicate that the coherent quasiparticle weight disappears for temperatures significantly above TCT_C, and that the kk-dependence of the T-induced changes in the spectra invalidate an interpretation of these data in terms of the superposition of a `universal' metallic spectrum and an insulating spectrum whose relative weight changes with temperature. In this sense, our data are not compatible with a phase separation scenario.Comment: 6 pages, 4 figure

    A high resolution, hard x-ray photoemission investigation of La_(2-2x)Sr_(1+2x)Mn_2O_7 (0.30<x<0.50): on microscopic phase separation and the surface electronic structure of a bilayered CMR manganite

    Full text link
    Photoemission data taken with hard x-ray radiation on cleaved single crystals of the bilayered, colossal magnetoresistant manganite La_(2-2x)Sr_(1+2x)Mn_2O_7 (LSMO) with 0.30<x<0.50 are presented. Making use of the increased bulk-sensitivity upon hard x-ray excitation it is shown that the core level footprint of the electronic structure of the LSMO cleavage surface is identical to that of the bulk. Furthermore, by comparing the core level shift of the different elements as a function of doping level x, it is shown that microscopic phase separation is unlikely to occur for this particular manganite well above the Curie temperature.Comment: 7 pages, 5 figure

    Nanoscale superconducting gap variations, strong coupling signatures and lack of phase separation in optimally doped BaFe1.86Co0.14As2

    Full text link
    We present tunneling data from optimally-doped, superconducting BaFe1.86Co0.14As2 and its parent compound, BaFe2As2. In the superconductor, clear coherence-like peaks are seen across the whole field of view, and their analysis reveals nanoscale variations in the superconducting gap value, Delta. The average magnitude of 2Delta is ~7.4 kBTC, which exceeds the BCS weak coupling value for either s- or d-wave superconductivity. The characteristic length scales of the deviations from the average gap value, and of an anti-correlation discovered between the gap magnitude and the zero bias conductance, match well with the average separation between the Co dopant ions in the superconducting FeAs planes. The tunneling spectra themselves possess a peak-dip-hump lineshape, suggestive of a coupling of the superconducting electronic system to a well-defined bosonic mode of energy 4.7 kBTC, such as the spin resonance observed recently in inelastic neutron scattering.Comment: 4 figures, corrected typos, reduced size of image

    Interaction-driven quantum phase transition of a single magnetic impurity in Fe(Se,Te)

    Full text link
    Understanding the interplay between individual magnetic impurities and superconductivity is crucial for bottom-up construction of novel phases of matter. For decades, the description by Yu, Shiba and Rusinov (YSR) of single spins in a superconductor and its extension to include quantum effects has proven highly successful: the pair-breaking potential of the spin generates sub-gap electron- and hole excitations that are energetically equidistant from zero. By tuning the energy of the sub-gap states through zero, the impurity screening by the superconductor makes the ground state gain or lose an electron, signalling a parity breaking quantum phase transition. Here we show that in multi-orbital impurities, correlations between the in-gap states can conversely lead to a quantum phase transition where more than one electron simultaneously leave the impurity without significant effect of the screening by the superconductor, while the parity may remain unchanged. This finding implies that the YSR treatment is not always valid, and that intra-atomic interactions, particularly Hund's coupling that favours high spin configurations, are an essential ingredient for understanding the sub-gap states. The interaction-driven quantum phase transition should be taken into account for impurity-based band-structure engineering, and may provide a fruitful basis in the search for novel physics.Comment: Main text and supplementar

    Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors

    Get PDF
    In the first three years since the discovery of Fe-based high Tc superconductors, scanning tunneling microscopy (STM) and spectroscopy have shed light on three important questions. First, STM has demonstrated the complexity of the pairing symmetry in Fe-based materials. Phase-sensitive quasiparticle interference (QPI) imaging and low temperature spectroscopy have shown that the pairing order parameter varies from nodal to nodeless s\pm within a single family, FeTe1-xSex. Second, STM has imaged C4 -> C2 symmetry breaking in the electronic states of both parent and superconducting materials. As a local probe, STM is in a strong position to understand the interactions between these broken symmetry states and superconductivity. Finally, STM has been used to image the vortex state, giving insights into the technical problem of vortex pinning, and the fundamental problem of the competing states introduced when superconductivity is locally quenched by a magnetic field. Here we give a pedagogical introduction to STM and QPI imaging, discuss the specific challenges associated with extracting bulk properties from the study of surfaces, and report on progress made in understanding Fe-based superconductors using STM techniques.Comment: 36 pages, 23 figures, 229 reference
    • …
    corecore