19 research outputs found

    The Wooster Voice (Wooster, OH), 1949-12-08

    Get PDF
    Dr. T. Cuyler Young addresses the campus during the annual Wooster Day celebration. Dr. Delbert Lean will give his 40th annual reading of Charles Dickens\u27 Christmas Carol. Plans to build a darkroom for student publications are announced. Additionally, Wooster host the fall conference of the Ohio division of the National Student Association.https://openworks.wooster.edu/voice1941-1950/1204/thumbnail.jp

    Stress Leads to Contrasting Effects on the Levels of Brain Derived Neurotrophic Factor in the Hippocampus and Amygdala

    Get PDF
    Recent findings on stress induced structural plasticity in rodents have identified important differences between the hippocampus and amygdala. The same chronic immobilization stress (CIS, 2h/day) causes growth of dendrites and spines in the basolateral amygdala (BLA), but dendritic atrophy in hippocampal area CA3. CIS induced morphological changes also differ in their temporal longevity- BLA hypertrophy, unlike CA3 atrophy, persists even after 21 days of stress-free recovery. Furthermore, a single session of acute immobilization stress (AIS, 2h) leads to a significant increase in spine density 10 days, but not 1 day, later in the BLA. However, little is known about the molecular correlates of the differential effects of chronic and acute stress. Because BDNF is known to be a key regulator of dendritic architecture and spines, we investigated if the levels of BDNF expression reflect the divergent effects of stress on the hippocampus and amygdala. CIS reduces BDNF in area CA3, while it increases it in the BLA of male Wistar rats. CIS-induced increase in BDNF expression lasts for at least 21 days after the end of CIS in the BLA. But CIS-induced decrease in area CA3 BDNF levels, reverses to normal levels within the same period. Finally, BDNF is up regulated in the BLA 1 day after AIS and this increase persists even 10 days later. In contrast, AIS fails to elicit any significant change in area CA3 at either time points. Together, these findings demonstrate that both acute and chronic stress trigger opposite effects on BDNF levels in the BLA versus area CA3, and these divergent changes also follow distinct temporal profiles. These results point to a role for BDNF in stress-induced structural plasticity across both hippocampus and amygdala, two brain areas that have also been implicated in the cognitive and affective symptoms of stress-related psychiatric disorders

    Novel transcripts reveal a complex structure of the human TRKA gene and imply the presence of multiple protein isoforms

    Get PDF
    Publisher Copyright: © 2015 Luberg et al.Background: Tropomyosin-related kinase A (TRKA) is a nerve growth factor (NGF) receptor that belongs to the tyrosine kinase receptor family. It is critical for the correct development of many types of neurons including pain-mediating sensory neurons and also controls proliferation, differentiation and survival of many neuronal and non-neuronal cells. TRKA (also known as NTRK1) gene is a target of alternative splicing which can result in several different protein isoforms. Presently, three human isoforms (TRKAI, TRKAII and TRKAIII) and two rat isoforms (TRKA L0 and TRKA L1) have been described. Results: We show here that human TRKA gene is overlapped by two genes and spans 67 kb-almost three times the size that has been previously described. Numerous transcription initiation sites from eight different 5' exons and a sophisticated splicing pattern among exons encoding the extracellular part of TRKA receptor indicate that there might be a large variety of alternative protein isoforms. TrkA genes in rat and mouse appear to be considerably shorter, are not overlapped by other genes and display more straightforward splicing patterns. We describe the expression profile of alternatively spliced TRKA transcripts in different tissues of human, rat and mouse, as well as analyze putative endogenous TRKA protein isoforms in human SH-SY5Y and rat PC12 cells. We also characterize a selection of novel putative protein isoforms by portraying their phosphorylation, glycosylation and intracellular localization patterns. Our findings show that an isoform comprising mainly of TRKA kinase domain is capable of entering the nucleus. Conclusions: Results obtained in this study refer to the existence of a multitude of TRKA mRNA and protein isoforms, with some putative proteins possessing very distinct properties.publishersversionPeer reviewe

    Touch receptor end-organ innervation and function requires sensory expression of the transcription factor Meis2

    No full text
    Abstract Touch sensation is primarily encoded by mechanoreceptors, sometimes called Low-Threshold Mechanoreceptors (LTMRs), with their cell bodies in the Dorsal Root Ganglia (DRG). LTMRs make up no more that 20% of all sensory neurons and exhibit great diversity in terms of molecular signature, terminal ending morphology and electrophysiological properties, mirroring the complexity of tactile experience. LTMRs are an interesting model to study the molecular cues controlling neuronal diversification in terms of both molecular specification and target-field innervation. The morphological specialization of the sensory end-organ of LTMRs exhibits striking diversity between different mechanoreceptor types and whether it occurs in the glabrous or hairy skin. Much has been learnt about transcriptional codes that define different LTMR subtypes, but the identification of molecular players that participate in their late maturation has not been extensively addressed. Here we identified the TALE homeodomain transcription factor Meis2 as a key regulator of LTMR targetfield innervation. Meis2 is specifically expressed in cutaneous LTMRs and its expression depends on target-derived signals. Meis2 gene inactivation in mouse sensory neurons precursors or early postmitotic neurons allows normal survival and specification of LTMRs. However, LTMRs lacking Meis2 show pronounced defects in end-organ innervation which was accompanied by severely impaired receptor properties and behavioral responses. These results establish Meis2 as a major transcriptional regulator controlling the orderly formation of peripheral end-organs required for touch

    The autism-associated Meis2 gene is necessary for cardiac baroreflex regulation in mice

    No full text
    International audienceAbstract Recent understanding of Autism Spectrum Disorder (ASD) showed that peripheral primary mechanosensitive neurons involved in touch sensation and central neurons affected in ASD share transcriptional regulators. Mutant mice for ASD-associated transcription factors exhibit impaired primary tactile perception and restoring those genes specifically in primary sensory neurons rescues some of the anxiety-like behavior and social interaction defects. Interestingly, peripheral mechanosensitive sensory neurons also project to internal organs including the cardiovascular system, and an imbalance of the cardio-vascular sympathovagal regulation is evidenced in ASD and intellectual disability. ASD patients have decreased vagal tone, suggesting dysfunction of sensory neurons involved in cardio-vascular sensing. In light of our previous finding that the ASD-associated Meis2 gene is necessary for normal touch neuron development and function, we investigated here if its inactivation in mouse peripheral sensory neurons also affects cardio-vascular sympathovagal regulation and baroreflex. Combining echocardiography, pharmacological challenge, blood pressure monitoring, and heart rate variability analysis, we found that Meis2 mutant mice exhibited a blunted vagal response independently of any apparent cardiac malformation. These results suggest that defects in primary sensory neurons with mechanosensitive identity could participate in the imbalanced cardio-vascular sympathovagal tone found in ASD patients, reinforcing current hypotheses on the role of primary sensory neurons in the etiology of ASD

    <em>MEIS1</em> variant as a determinant of autonomic imbalance in Restless Legs Syndrome.

    No full text
    Restless Legs Syndrome (RLS) is a genetically complex neurological disorder in which overlapping genetic risk factors may contribute to the diversity and heterogeneity of the symptoms. The main goal of the study was to investigate, through analysis of heart rate variability (HRV), whether in RLS patients the MEIS1 polymorphism at risk influences the sympathovagal regulation in different sleep stages. Sixty-four RLS patients with periodic leg movement index above 15 per hour, and 38 controls underwent one night of video-polysomnographic recording. HRV in the frequency- and time- domains was analyzed during nighttime sleep. All RLS patients were genotyped, and homozygotes for rs2300478 in the MEIS1 locus were used for further analysis. Comparison of the sympathovagal pattern of RLS patients to control subjects did not show significant differences after adjustments for confounding factors in frequency-domain analyses, but showed an increased variability during N2 and N3 stages in time-domain analyses in RLS patients. Sorting of RLS patients according to MEIS1 polymorphism reconfirmed the association between MEIS1 and PLMS, and showed a significant increased sympathovagal balance during N3 stage in those homozygotes for the risk allele. RLS patients should be considered differently depending on MEIS1 genotype, some being potentially at risk for cardiovascular disorders
    corecore