30,351 research outputs found
ODE parameter inference using adaptive gradient matching with Gaussian processes
Parameter inference in mechanistic models based on systems of coupled differential equa- tions is a topical yet computationally chal- lenging problem, due to the need to fol- low each parameter adaptation with a nu- merical integration of the differential equa- tions. Techniques based on gradient match- ing, which aim to minimize the discrepancy between the slope of a data interpolant and the derivatives predicted from the differen- tial equations, offer a computationally ap- pealing shortcut to the inference problem. The present paper discusses a method based on nonparametric Bayesian statistics with Gaussian processes due to Calderhead et al. (2008), and shows how inference in this model can be substantially improved by consistently inferring all parameters from the joint dis- tribution. We demonstrate the efficiency of our adaptive gradient matching technique on three benchmark systems, and perform a de- tailed comparison with the method in Calder- head et al. (2008) and the explicit ODE inte- gration approach, both in terms of parameter inference accuracy and in terms of computa- tional efficiency
Real eigenvalue analysis in NASTRAN by the tridiagonal reduction (FEER) method
Implementation of the tridiagonal reduction method for real eigenvalue extraction in structural vibration and buckling problems is described. The basic concepts underlying the method are summarized and special features, such as the computation of error bounds and default modes of operation are discussed. In addition, the new user information and error messages and optional diagnostic output relating to the tridiagonal reduction method are presented. Some numerical results and initial experiences relating to usage in the NASTRAN environment are provided, including comparisons with other existing NASTRAN eigenvalue methods
An expert system for choosing the best combination of options in a general-purpose program for automated design synthesis
An expert system was developed to aid a user of the Automated Design Synthesis (ADS) general-purpose optimization computer program in selecting the best combination of strategy, optimizer, and one-dimensional search options for solving a problem. There are approximately 100 such combinations available in ADS. The knowledge base contains over 200 rules, and is divided into three categories: constrained problems, unconstrained problems, and constrained problems treated as unconstrained problems. The inference engine is written in LISP and is available on DEC-VAX and IBM PC/XT computers
A Feynman-Kac Formula for Anticommuting Brownian Motion
Motivated by application to quantum physics, anticommuting analogues of
Wiener measure and Brownian motion are constructed. The corresponding Ito
integrals are defined and the existence and uniqueness of solutions to a class
of stochastic differential equations is established. This machinery is used to
provide a Feynman-Kac formula for a class of Hamiltonians. Several specific
examples are considered.Comment: 21 page
Characterization of Bose-Hubbard Models with Quantum Non-demolition Measurements
We propose a scheme for the detection of quantum phase transitions in the 1D
Bose-Hubbard (BH) and 1D Extended Bose-Hubbard (EBH) models, using the
non-demolition measurement technique of quantum polarization spectroscopy. We
use collective measurements of the effective total angular momentum of a
particular spatial mode to characterise the Mott insulator to superfluid phase
transition in the BH model, and the transition to a density wave state in the
EBH model. We extend the application of collective measurements to the ground
states at various deformations of a super-lattice potential.Comment: 8 pages, 9 figures; published version in PRA, Editors' Suggestio
Does environment affect the star formation histories of early-type galaxies?
Differences in the stellar populations of galaxies can be used to quantify
the effect of environment on the star formation history. We target a sample of
early-type galaxies from the Sloan Digital Sky Survey in two different
environmental regimes: close pairs and a general sample where environment is
measured by the mass of their host dark matter halo. We apply a blind source
separation technique based on principal component analysis, from which we
define two parameters that correlate, respectively, with the average stellar
age (eta) and with the presence of recent star formation (zeta) from the
spectral energy distribution of the galaxy. We find that environment leaves a
second order imprint on the spectra, whereas local properties - such as
internal velocity dispersion - obey a much stronger correlation with the
stellar age distribution.Comment: 5 pages, 2 figures. Proceedings of JENAM 2010, Symposium 2:
"Environment and the formation of galaxies: 30 years later
Structural optimization of an alternate design for the space shuttle solid rocket booster field joint
A structural optimization procedure is used to determine the shape of an alternate design for the shuttle solid rocket booster field joint. In contrast to the tang and clevis design of the existing joint, this alternate design consists of two flanges bolted together. Configurations with 150 studs of 1 1/8 in. diameter and 135 studs of 1 3/16 in. diameter are considered. Using a nonlinear programming procedure, the joint weight is minimized under constraints on either von Mises or maximum normal stresses, joint opening and geometry. The procedure solves the design problem by replacing it by a sequence of approximate (convex) subproblems; the pattern of contact between the joint halves is determined every few cycles by a nonliner displacement analysis. The minimum weight design has 135 studs of 1 3/16 in. diameter and is designed under constraints on normal stresses. It weighs 1144 lb per joint more than the current tang and clevis design
- …