5,502 research outputs found

    A new clinical tool for assessing numerical abilities in neurological diseases: numerical activities of daily living

    Get PDF
    The aim of this study was to build an instrument, the numerical activities of daily living (NADL), designed to identify the specific impairments in numerical functions that may cause problems in everyday life. These impairments go beyond what can be inferred from the available scales evaluating activities of daily living in general, and are not adequately captured by measures of the general deterioration of cognitive functions as assessed by standard clinical instruments like the MMSE and MoCA. We assessed a control group (n = 148) and a patient group affected by a wide variety of neurological conditions (n = 175), with NADL along with IADL, MMSE, and MoCA. The NADL battery was found to have satisfactory construct validity and reliability, across a wide age range. This enabled us to calculate appropriate criteria for impairment that took into account age and education. It was found that neurological patients tended to overestimate their abilities as compared to the judgment made by their caregivers, assessed with objective tests of numerical abilities

    Comments on "Wall-plug (AC) power consumption of a very high energy e+/e- storage ring collider" by Marc Ross

    Full text link
    The paper arXiv:1308.0735 questions some of the technical assumptions made by the TLEP Steering Group when estimating in arXiv:1305.6498 the power requirement for the very high energy e+e- storage ring collider TLEP. We show that our assumptions are based solidly on CERN experience with LEP and the LHC, as well accelerators elsewhere, and confirm our earlier baseline estimate of the TLEP power consumption.Comment: 6 page

    FastJet user manual

    Get PDF
    FastJet is a C++ package that provides a broad range of jet finding and analysis tools. It includes efficient native implementations of all widely used 2-to-1 sequential recombination jet algorithms for pp and e+e- collisions, as well as access to 3rd party jet algorithms through a plugin mechanism, including all currently used cone algorithms. FastJet also provides means to facilitate the manipulation of jet substructure, including some common boosted heavy-object taggers, as well as tools for estimation of pileup and underlying-event noise levels, determination of jet areas and subtraction or suppression of noise in jets.Comment: 69 pages. FastJet 3 is available from http://fastjet.fr

    Non-Global Logarithms in Filtered Jet Algorithms

    Get PDF
    We analytically and numerically study the effect of perturbative gluons emission on the "Filtering analysis", which is part of a subjet analysis procedure proposed two years ago to possibly identify a low-mass Higgs boson decaying into b\bar{b} at the LHC. This leads us to examine the non-global structure of the resulting perturbative series in the leading single-log large-N_c approximation, including all-orders numerical results, simple analytical approximations to them and comments on the structure of their series expansion. We then use these results to semi-analytically optimize the parameters of the Filtering analysis so as to suppress as much as possible the effect of underlying event and pile-up on the Higgs mass peak reconstruction while keeping the major part of the perturbative radiation from the b\bar{b} dipole.Comment: 47 pages, 25 figures, 1 figure and a few comments added, version accepted for publication in JHE

    Snowmass 2001: Jet Energy Flow Project

    Get PDF
    Conventional cone jet algorithms arose from heuristic considerations of LO hard scattering coupled to independent showering. These algorithms implicitly assume that the final states of individual events can be mapped onto a unique set of jets that are in turn associated with a unique set of underlying hard scattering partons. Thus each final state hadron is assigned to a unique underlying parton. The Jet Energy Flow (JEF) analysis described here does not make such assumptions. The final states of individual events are instead described in terms of flow distributions of hadronic energy. Quantities of physical interest are constructed from the energy flow distribution summed over all events. The resulting analysis is less sensitive to higher order perturbative corrections and the impact of showering and hadronization than the standard cone algorithms.Comment: REVTeX4, 13 pages, 6 figures; Contribution to the P5 Working Group on QCD and Strong Interactions at Snowmass 200

    Effects of invisible particle emission on global inclusive variables at hadron colliders

    Full text link
    We examine the effects of invisible particle emission in conjunction with QCD initial state radiation (ISR) on quantities designed to probe the mass scale of new physics at hadron colliders, which involve longitudinal as well as transverse final-state momenta. This is an extension of our previous treatment, arXiv:0903.2013, of the effects of ISR on global inclusive variables. We present resummed results on the visible invariant mass distribution and compare them to parton-level Monte Carlo results for top quark and gluino pair-production at the LHC. There is good agreement as long as the visible pseudorapidity interval is large enough (eta ~ 3). The effect of invisible particle emission is small in the case of top pair production but substantial for gluino pair production. This is due mainly to the larger mass of the intermediate particles in gluino decay (squarks rather than W-bosons). We also show Monte Carlo modelling of the effects of hadronization and the underlying event. The effect of the underlying event is large but may be approximately universal.Comment: 22 pages, expanded sections and other minor modifications. Version published in JHE

    Neutron star properties with relativistic equations of state

    Get PDF
    We study the properties of neutron stars adopting relativistic equations of state of neutron star matter, calculated in the framework of the relativistic Brueckner-Hartree-Fock approximation for electrically charge neutral neutron star matter in beta-equilibrium. For higher densities more baryons (hyperons etc.) are included by means of the relativistic Hartree- or Hartree-Fock approximation. The special features of the different approximations and compositions are discussed in detail. Besides standard neutron star properties special emphasis is put on the limiting periods of neutron stars, for which the Kepler criterion and gravitation-reaction instabilities are considered. Furthermore the cooling behaviour of neutron stars is investigated, too. For comparison we give also the outcome for some nonrelativistic equations of state.Comment: 43 pages, 22 ps-figures, to be published in the International Journal of Modern Physics

    X-Ray Light Curves of Gamma-ray Bursts Detected with the All-Sky Monitor on RXTE

    Full text link
    We present X-ray light curves (1.5-12 keV) for fifteen gamma-ray bursts (GRBs) detected by the All-Sky Monitor on the Rossi X-ray Timing Explorer. We compare these soft X-ray light curves with count rate histories obtained by the high-energy (>12 keV) experiments BATSE, Konus-Wind, the BeppoSAX Gamma-Ray Burst Monitor, and the burst monitor on Ulysses. We discuss these light curves within the context of a simple relativistic fireball and synchrotron shock paradigm, and we address the possibility of having observed the transition between a GRB and its afterglow. The light curves show diverse morphologies, with striking differences between energy bands. In several bursts, intervals of significant emission are evident in the ASM energy range with little or no corresponding emission apparent in the high-energy light curves. For example, the final peak of GRB 970815 as recorded by the ASM is only detected in the softest BATSE energy bands. We also study the duration of bursts as a function of energy. Simple, singly-peaked bursts seem consistent with the E^{-0.5} power law expected from an origin in synchrotron radiation, but durations of bursts that exhibit complex temporal structure are not consistent with this prediction. Bursts such as GRB 970828 that show many short spikes of emission at high energies last significantly longer at low energies than the synchrotron cooling law would predict.Comment: 15 pages with 20 figures and 2 tables. In emulateapj format. Accepted by ApJ
    corecore