4,281 research outputs found

    Evolution and Magnitudes of Candidate Planet Nine

    Get PDF
    The recently renewed interest in a possible additional major body in the outer solar system prompted us to study the thermodynamic evolution of such an object. We assumed that it is a smaller version of Uranus and Neptune. We modeled the temporal evolution of the radius, temperature, intrinsic luminosity, and the blackbody spectrum of distant ice giant planets. The aim is also to provide estimates of the magnitudes in different bands to assess whether the object might be detectable. Simulations of the cooling and contraction were conducted for ice giants with masses of 5, 10, 20, and 50 Mearth that are located at 280, 700, and 1120 AU from the Sun. The core composition, the fraction of H/He, the efficiency of energy transport, and the initial luminosity were varied. The atmospheric opacity was set to 1, 50, and 100 times solar metallicity. We find for a nominal 10 Mearth planet at 700 AU at the current age of the solar system an effective temperature of 47 K, much higher than the equilibrium temperature of about 10 K, a radius of 3.7 Rearth, and an intrinsic luminosity of 0.006 Ljupiter. It has estimated apparent magnitudes of Johnson V, R, I, L, N, Q of 21.7, 21.4, 21.0, 20.1, 19.9, and 10.7, and WISE W1-W4 magnitudes of 20.1, 20.1, 18.6, and 10.2. The Q and W4 band and other observations longward of about 13 microns pick up the intrinsic flux. If candidate Planet 9 has a significant H/He layer and an efficient energy transport in the interior, then its luminosity is dominated by the intrinsic contribution, making it a self-luminous planet. At a likely position on its orbit near aphelion, we estimate for a mass of 5, 10, 20, and 50 Mearth a V magnitude from the reflected light of 24.3, 23.7, 23.3, and 22.6 and a Q magnitude from the intrinsic radiation of 14.6, 11.7, 9.2, and 5.8. The latter would probably have been detected by past surveys.Comment: 6 pages, 3 figures, accepted to A&

    Accelerated Parameter Estimation with DALEχ\chi

    Get PDF
    We consider methods for improving the estimation of constraints on a high-dimensional parameter space with a computationally expensive likelihood function. In such cases Markov chain Monte Carlo (MCMC) can take a long time to converge and concentrates on finding the maxima rather than the often-desired confidence contours for accurate error estimation. We employ DALEχ\chi (Direct Analysis of Limits via the Exterior of χ2\chi^2) for determining confidence contours by minimizing a cost function parametrized to incentivize points in parameter space which are both on the confidence limit and far from previously sampled points. We compare DALEχ\chi to the nested sampling algorithm implemented in MultiNest on a toy likelihood function that is highly non-Gaussian and non-linear in the mapping between parameter values and χ2\chi^2. We find that in high-dimensional cases DALEχ\chi finds the same confidence limit as MultiNest using roughly an order of magnitude fewer evaluations of the likelihood function. DALEχ\chi is open-source and available at https://github.com/danielsf/Dalex.git

    Measuring dark energy properties with 3D cosmic shear

    Get PDF
    We present parameter estimation forecasts for present and future 3D cosmic shear surveys. We demonstrate that, in conjunction with results from cosmic microwave background (CMB) experiments, the properties of dark energy can be estimated with very high precision with large-scale, fully 3D weak lensing surveys. In particular, a 5-band, 10,000 square degree ground-based survey to a median redshift of zm=0.7 could achieve 1-σ\sigma marginal statistical errors, in combination with the constraints expected from the CMB Planck Surveyor, of Δ\Deltaw0=0.108 and Δ\Deltawa=0.099 where we parameterize w by w(a)=w0+wa(1-a) where a is the scale factor. Such a survey is achievable with a wide-field camera on a 4 metre class telescope. The error on the value of w at an intermediate pivot redshift of z=0.368 is constrained to Δ\Deltaw(z=0.368)=0.0175. We compare and combine the 3D weak lensing constraints with the cosmological and dark energy parameters measured from planned Baryon Acoustic Oscillation (BAO) and supernova Type Ia experiments, and find that 3D weak lensing significantly improves the marginalized errors. A combination of 3D weak lensing, CMB and BAO experiments could achieve Δ\Deltaw0=0.037 and Δ\Deltawa=0.099. Fully 3D weak shear analysis avoids the loss of information inherent in tomographic binning, and we show that the sensitivity to systematic errors is much less. In conjunction with the fact that the physics of lensing is very soundly based, this analysis demonstrates that deep, wide-angle 3D weak lensing surveys are extremely promising for measuring dark energy properties.Comment: 18 pages, 16 figures. Accepted to MNRAS. Figures now in grayscale. Further discussions on non-Gaussianity and photometric redshift errors. Some references adde

    The Influence of Evolving Dark Energy on Cosmology

    Full text link
    Observational evidence indicating that the expansion of the universe is accelerating has surprised cosmologists in recent years. Cosmological models have sought to explain this acceleration by incorporating `dark energy', of which the traditional cosmological constant is just one possible candidate. Several cosmological models involving an evolving equation of state of the dark energy have been proposed, as well as possible energy exchange to other components, such as dark matter. This paper summarises the forms of the most prominent models and discusses their implications for cosmology and astrophysics. Finally, this paper examines the current and future observational constraints on the nature of dark energy.Comment: 11 pages, 11 figures, to appear in Proceedings of the Astronomical Society of Australi
    corecore