2,162 research outputs found
The Equivalence Principle as a Stepping Stone from Special to General Relativity: A Socratic Dialog
In this paper we show how the student can be led to an understanding of the
connection between special relativity and general relativity by considering the
time dilation effect of clocks placed on the surface of the Earth. This paper
is written as a Socratic dialog between a lecturer Sam and a student Kim.Comment: 8 pages, 1 figure, uses the revtex4 documentclass. Submitted to the
American Journal of Physics. Minor modification and corrections following
referees' comment
Polarizable molecular interactions in condensed phase and their equivalent nonpolarizable models
Earlier, using phenomenological approach, we showed that in some cases
polarizable models of condensed phase systems can be reduced to nonpolarizable
equivalent models with scaled charges. Examples of such systems include ionic
liquids, TIPnP-type models of water, protein force fields, and others, where
interactions and dynamics of inherently polarizable species can be accurately
described by nonpolarizable models. To describe electrostatic interactions, the
effective charges of simple ionic liquids are obtained by scaling the actual
charges of ions by a factor of 1/sqrt(eps_el), which is due to electronic
polarization screening effect; the scaling factor of neutral species is more
complicated. Here, using several theoretical models, we examine how exactly the
scaling factors appear in theory, and how, and under what conditions,
polarizable Hamiltonians are reduced to nonpolarizable ones. These models allow
one to trace the origin of the scaling factors, determine their values, and
obtain important insights on the nature of polarizable interactions in
condensed matter systems.Comment: 43 pages, 3 figure
Formation of Nanopillar Arrays in Ultrathin Viscous Films: The Critical Role of Thermocapillary Stresses
Experiments by several groups during the past decade have shown that a molten
polymer nanofilm subject to a large transverse thermal gradient undergoes
spontaneous formation of periodic nanopillar arrays. The prevailing explanation
is that coherent reflections of acoustic phonons within the film cause a
periodic modulation of the radiation pressure which enhances pillar growth. By
exploring a deformational instability of particular relevance to nanofilms, we
demonstrate that thermocapillary forces play a crucial role in the formation
process. Analytic and numerical predictions show good agreement with the pillar
spacings obtained in experiment. Simulations of the interface equation further
determine the rate of pillar growth of importance to technological
applications.Comment: 5 pages, 4 figure
Current-induced phase transition in ballistic Ni nanocontacts
Local phase transition from ferromagnetic to paramagnetic state in the region
of the ballistic Ni nanocontacts (NCs) has been experimentally observed. We
found that contact size reduction leads to an increase in the bias voltage at
which the local phase transition occurs. Presented theoretical interpretation
of this phenomena takes into the account the specificity of the local heating
of the ballistic NC and describes the electron's energy relaxation dependences
on the applied voltage. The experimental data are in good qualitative and
quantitative agreement with the theory proposed.Comment: 8 pages, 2 figure
Quantitative atomic spectroscopy for primary thermometry
Quantitative spectroscopy has been used to measure accurately the
Doppler-broadening of atomic transitions in Rb vapor. By using a
conventional platinum resistance thermometer and the Doppler thermometry
technique, we were able to determine with a relative uncertainty of
, and with a deviation of from the
expected value. Our experiment, using an effusive vapour, departs significantly
from other Doppler-broadened thermometry (DBT) techniques, which rely on weakly
absorbing molecules in a diffusive regime. In these circumstances, very
different systematic effects such as magnetic sensitivity and optical pumping
are dominant. Using the model developed recently by Stace and Luiten, we
estimate the perturbation due to optical pumping of the measured value
was less than . The effects of optical pumping on atomic and
molecular DBT experiments is mapped over a wide range of beam size and
saturation intensity, indicating possible avenues for improvement. We also
compare the line-broadening mechanisms, windows of operation and detection
limits of some recent DBT experiments
Pulsed laser deposition of SrTiO3/LaGaO3 and SrTiO3/LaAlO3: plasma plume effects
Pulsed laser deposition of SrTiO3/LaGaO3 and SrTiO3/LaAlO3 interfaces has
been analyzed with a focus on the kinetic energy of the ablated species. LaGaO3
and LaAlO3 plasma plumes were studied by fast photography and space-resolved
optical emission spectroscopy. Reflection high energy electron diffraction was
performed proving a layer-by-layer growth up to 10-1 mbar oxygen pressure. The
role of the energetic plasma plume on the two-dimensional growth and the
presence of interfacial defects at different oxygen growth pressure has been
discussed in view of the conducting properties developing at such
polar/non-polar interfaces
Measuring the energy landscape roughness and the transition state location of biomolecules using single molecule mechanical unfolding experiments
Single molecule mechanical unfolding experiments are beginning to provide
profiles of the complex energy landscape of biomolecules. In order to obtain
reliable estimates of the energy landscape characteristics it is necessary to
combine the experimental measurements with sound theoretical models and
simulations. Here, we show how by using temperature as a variable in mechanical
unfolding of biomolecules in laser optical tweezer or AFM experiments the
roughness of the energy landscape can be measured without making any
assumptions about the underlying reaction oordinate. The efficacy of the
formalism is illustrated by reviewing experimental results that have directly
measured roughness in a protein-protein complex. The roughness model can also
be used to interpret experiments on forced-unfolding of proteins in which
temperature is varied. Estimates of other aspects of the energy landscape such
as free energy barriers or the transition state (TS) locations could depend on
the precise model used to analyze the experimental data. We illustrate the
inherent difficulties in obtaining the transition state location from loading
rate or force-dependent unfolding rates. Because the transition state moves as
the force or the loading rate is varied it is in general difficult to invert
the experimental data unless the curvature at the top of the one dimensional
free energy profile is large, i.e the barrier is sharp. The independence of the
TS location on force holds good only for brittle or hard biomolecules whereas
the TS location changes considerably if the molecule is soft or plastic. We
also comment on the usefulness of extension of the molecule as a surrogate
reaction coordinate especially in the context of force-quench refolding of
proteins and RNA.Comment: 44 pages, 7 figure
Electron Conditioning of Technical Aluminium Surfaces: Effect on the Secondary Electron Yield
The effect of electron conditioning on commercially aluminium alloys 1100 and
6063 were investigated. Contrary to the assumption that electron conditioning,
if performed long enough, can reduce and stabilize the SEY to low values (, value of many pure elements), the SEY of aluminium did not go lower than
1.8. In fact, it reincreases with continued electron exposure dose.Comment: 36 pages, 25 figures, submitted to JVST
Bond-order correlation energies for small Si-containing molecules compared with ab initio results from low-order Moller-Plesset perturbation theory
The present study of small molecules containing silicon has been motivated by
(a) the considerable interest being shown currently in the kinetics and
reactivity of such molecules, and (b) the biotechnological potential of
silicon-derivate surfaces as substrates in the adsorption of, for instance,
amino acids and proteins. Therefore, we have studied by (i) a semi-empirical
approach and (ii) an ab initio procedure employing low-order Moller-Plesset
perturbation theory, the molecular correlation energies of some neutral closed
and open shell silicon-containing molecules in the series SiXnYm. Procedure (i)
is shown to have particular merit for the correlation of the ionic members
studied in the above series, while the ab initio procedures employed come into
their own for neutral species.Comment: Mol. Phys., to be publishe
Reconsideration of Second Harmonic Generation from neat Air/Water Interface: Broken of Kleinman Symmetry from Dipolar Contribution
It has been generally accepted that there are significant quadrupolar and
bulk contributions to the second harmonic generation (SHG) reflected from the
neat air/water interface, as well as common liquid interfaces. Because there
has been no general methodology to determine the quadrupolar and bulk
contributions to the SHG signal from a liquid interface, this conclusion was
reached based on the following two experimental phenomena. Namely, the broken
of the macroscopic Kleinman symmetry, and the significant temperature
dependence of the SHG signal from the neat air/water interface. However,
because sum frequency generation vibrational spectroscopy (SFG-VS) measurement
of the neat air/water interface observed no apparent temperature dependence,
the temperature dependence in the SHG measurement has been reexamined and
proven to be an experimental artifact. Here we present a complete microscopic
analysis of the susceptibility tensors of the air/water interface, and show
that dipolar contribution alone can be used to address the issue of broken of
the macroscopic Kleinman symmetry at the neat air/water interface. Using this
analysis, the orientation of the water molecules at the interface can be
obtained, and it is consistent with the measurement from SFG-VS. Therefore, the
key rationales to conclude significantly quadrupolar and bulk contributions to
the SHG signal of the neat air/water interface can no longer be considered as
valid as before. This new understanding of the air/water interface can shed
light on our understanding of the nonlinear optical responses from other
molecular interfaces as well
- …