144 research outputs found

    Systemic inhibition of myeloid dendritic cells by circulating HLA class I molecules in HIV-1 infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1 infection is associated with profound dysfunction of myeloid dendritic cells, for reasons that remain ill-defined. Soluble HLA class I molecules can have important inhibitory effects on T cells and NK cells, but may also contribute to reduced functional properties of professional antigen-presenting cells. Here, we investigated the expression of soluble HLA class I isoforms during HIV-1 infection and assessed their functional impact on antigen-presenting characteristics of dendritic cells.</p> <p>Results</p> <p>Soluble HLA class I molecules were highly upregulated in progressive HIV-1 infection as determined by quantitative Western blots. This was associated with strong increases of intracellular expression of HLA class I isoforms in dendritic cells and monocytes. Using mixed lymphocyte reactions, we found that soluble HLA class I molecules effectively inhibited the antigen-presenting properties of dendritic cells, however, there was no significant influence of HLA class I molecules on the cytokine-secretion properties of these cells. The immunomodulatory effects of soluble HLA class I molecules were mediated by interactions with inhibitory myelomonocytic MHC class I receptors from the Leukocyte Immunoglobulin Like Receptor (LILR) family.</p> <p>Conclusions</p> <p>During progressive HIV-1 infection, soluble HLA class I molecules can contribute to systemic immune dysfunction by inhibiting the antigen-presenting properties of myeloid dendritic cells through interactions with inhibitory myelomonocytic HLA class I receptors.</p

    A viral CTL escape mutation leading to immunoglobulin-like transcript 4-mediated functional inhibition of myelomonocytic cells

    Get PDF
    Viral mutational escape can reduce or abrogate recognition by the T cell receptor (TCR) of virus-specific CD8+ T cells. However, very little is known about the impact of cytotoxic T lymphocyte (CTL) epitope mutations on interactions between peptide–major histocompatibility complex (MHC) class I complexes and MHC class I receptors expressed on other cell types. Here, we analyzed a variant of the immunodominant human leukocyte antigen (HLA)-B2705–restricted HIV-1 Gag KK10 epitope (KRWIILGLNK) with an L to M amino acid substitution at position 6 (L6M), which arises as a CTL escape variant after primary infection but is sufficiently immunogenic to elicit a secondary, de novo HIV-1–specific CD8+ T cell response with an alternative TCR repertoire in chronic infection. In addition to altering recognition by HIV-1–specific CD8+ T cells, the HLA-B2705–KK10 L6M complex also exhibits substantially increased binding to the immunoglobulin-like transcript (ILT) receptor 4, an inhibitory MHC class I–specific receptor expressed on myelomonocytic cells. Binding of the B2705–KK10 L6M complex to ILT4 leads to a tolerogenic phenotype of myelomonocytic cells with lower surface expression of dendritic cell (DC) maturation markers and co-stimulatory molecules. These data suggest a link between CTL-driven mutational escape, altered recognition by innate MHC class I receptors on myelomonocytic cells, and functional impairment of DCs, and thus provide important new insight into biological consequences of viral sequence diversificatio

    Thermodynamics and structure of self-assembled networks

    Full text link
    We study a generic model of self-assembling chains which can branch and form networks with branching points (junctions) of arbitrary functionality. The physical realizations include physical gels, wormlike micells, dipolar fluids and microemulsions. The model maps the partition function of a solution of branched, self-assembling, mutually avoiding clusters onto that of a Heisenberg magnet in the mathematical limit of zero spin components. The model is solved in the mean field approximation. It is found that despite the absence of any specific interaction between the chains, the entropy of the junctions induces an effective attraction between the monomers, which in the case of three-fold junctions leads to a first order reentrant phase separation between a dilute phase consisting mainly of single chains, and a dense network, or two network phases. Independent of the phase separation, we predict the percolation (connectivity) transition at which an infinite network is formed that partially overlaps with the first-order transition. The percolation transition is a continuous, non thermodynamic transition that describes a change in the topology of the system. Our treatment which predicts both the thermodynamic phase equilibria as well as the spatial correlations in the system allows us to treat both the phase separation and the percolation threshold within the same framework. The density-density correlation correlation has a usual Ornstein-Zernicke form at low monomer densities. At higher densities, a peak emerges in the structure factor, signifying an onset of medium-range order in the system. Implications of the results for different physical systems are discussed.Comment: Submitted to Phys. Rev.

    Candidate Vaccine Sequences to Represent Intra- and Inter-Clade HIV-1 Variation

    Get PDF
    A likely key factor in the failure of a HIV-1 vaccine based on cytotoxic T lymphocytes (CTL) is the natural immunodominance of epitopes that fall in variable regions of the proteome, which both increases the chance of epitope sequence mismatch with the incoming challenge strain and replicates the pathogenesis of early CTL failure due to epitope escape mutation during natural infection. To identify potential vaccine sequences to focus the CTL response on highly conserved epitopes, the whole proteomes of HIV-1 clades A1, B, C, and D were assessed for Shannon entropy at each amino acid position. Highly conserved regions in Gag (cGag-1, Gag 148–214, and cGag-2, Gag 253–331), Env (cEnv, Env 521–606), and Nef (cNef, Nef 106–148) were identified across clades. Inter- and intra-clade variability of amino acids within the regions tended to overlap, suggesting that polyvalent representation of consensus sequences for the four clades would allow broad HIV-1 strain representation. These four conserved regions were rich in both known and predicted CTL epitopes presented by a breadth of HLA types, and screening of 54 persons with chronic HIV-1 infection revealed that these regions are commonly immunogenic in the context of natural infection. These data suggest that vaccine delivery of a 16-valent mixture of these regions could focus the CTL response against conserved epitopes that are broadly representative of circulating HIV-1 strains

    Sex- and Age-Related Differences in Morbidity Rates of 2009 Pandemic Influenza A H1N1 Virus of Swine Origin in Japan

    Get PDF
    BACKGROUND: The objective of the present study was to determine whether the morbidity rates of the 2009 pandemic influenza A H1N1 virus (pdmH1N1) varied by age and/or sex. METHODS AND FINDINGS: Retrospective analysis of 2,024,367 cases of pdmH1N1 was performed using the national surveillance data from influenza sentinel points in Japan. The male-to-female morbidity ratios (M/F ratios) in nineteen age groups were estimated as the primary outcome. The M/F ratios for pdmH1N1 influenza were: >1 in age groups <20 years and β‰₯80 years (p<0.001); <1 in age groups 20-79 years (p<0.001). This data suggests that males <20 years of age may be more likely to suffer from pdmH1N1 influenza than females in the same age categories. When the infection pattern for pdmH1N1 was compared with that of seasonal influenza outbreaks between 2000 and 2008, the M/F ratio for pdmH1N1 influenza was higher in ages 3-29 years and lower in ages 40-79 years. Because the present study was based on the national surveillance, it was impossible to estimate the morbidity rate for the Japanese population. It is also likely that the data did not capture asymptomatic or mild infections. CONCLUSIONS: Although exposure to the pdmH1N1 virus is assumed to be similar in both boys and girls, M/F ratios were >1 in those younger than 20 years. The subsequent reversal of the M/F ratio in the adult generation could be due to several possibilities, including: greater immunity among adult males, more asymptomatic infections among males, less reporting of illness by males, or differences in exposure to the virus and probability of visiting a clinic. These results suggest that the infection and virulence patterns of pdmH1N1 are more complex than previously considered

    Low prevalence of H. pylori Infection in HIV-Positive Patients in the Northeast of Brazil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study conducted in Northeastern Brazil, evaluated the prevalence of <it>H. pylori </it>infection and the presence of gastritis in HIV-infected patients.</p> <p>Methods</p> <p>There were included 113 HIV-positive and 141 age-matched HIV-negative patients, who underwent upper gastrointestinal endoscopy for dyspeptic symptoms. <it>H. pylori </it>status was evaluated by urease test and histology.</p> <p>Results</p> <p>The prevalence of <it>H. pylori </it>infection was significantly lower (p < 0.001) in HIV-infected (37.2%) than in uninfected (75.2%) patients. There were no significant differences between <it>H. pylori </it>status and gender, age, HIV viral load, antiretroviral therapy and the use of antibiotics. A lower prevalence of <it>H. pylori </it>was observed among patients with T CD4 cell count below 200/mm<sup>3</sup>; however, it was not significant. Chronic active antral gastritis was observed in 87.6% of the HIV-infected patients and in 780.4% of the control group (p = 0.11). <it>H. pylori </it>infection was significantly associated with chronic active gastritis in the antrum in both groups, but it was not associated with corpus chronic active gastritis in the HIV-infected patients.</p> <p>Conclusion</p> <p>We demonstrated that the prevalence of <it>H. pylori </it>was significantly lower in HIV-positive patients compared with HIV-negative ones. However, corpus gastritis was frequently observed in the HIV-positive patients, pointing to different mechanisms than <it>H. pylori </it>infection in the genesis of the lesion.</p

    Loss of NK Stimulatory Capacity by Plasmacytoid and Monocyte-Derived DC but Not Myeloid DC in HIV-1 Infected Patients

    Get PDF
    Dendritic cells (DC) are potent inducers of natural killer (NK) cells. There are two distinct populations in blood, myeloid (mDC) and plasmacytoid (pDC) but they can also be generated In vitro from monocytes (mdDC). Although it is established that blood DC are lost in HIV-1 infection, the full impact of HIV-1 infection on DC-NK cell interactions remains elusive. We thus investigated the ability of pDC, mDC, and mdDC from viremic and anti-retroviral therapy-treated aviremic HIV-1+ patients to stimulate various NK cell functions. Stimulated pDC and mdDC from HIV-1+ patients showed reduced secretion of IFN-Ξ± and IL-12p70 respectively and their capacity to stimulate expression of CD25 and CD69, and IFN-Ξ³ secretion in NK cells was also reduced. pDC activation of NK cell degranulation in response to a tumour cell line was severely reduced in HIV-1+ patients but the ability of mDC to activate NK cells was not affected by HIV-1 infection, with the exception of HLA-DR induction. No differences were observed between viremic and aviremic patients indicating that anti-retroviral therapy had minimal effect on restoration on pDC and mdDC-mediated activation of NK cells. Results from this study provide further insight into HIV-1 mediated suppression of innate immune functions

    Dynamics of Viral Evolution and CTL Responses in HIV-1 Infection

    Get PDF
    Improved understanding of the dynamics of host immune responses and viral evolution is critical for effective HIV-1 vaccine design. We comprehensively analyzed Cytotoxic T-lymphocyte (CTL)-viral epitope dynamics in an antiretroviral therapy-naΓ―ve subject over the first four years of HIV-1 infection. We found that CTL responses developed sequentially and required constant antigenic stimulation for maintenance. CTL responses exerting strong selective pressure emerged early and led to rapid escape, proliferated rapidly and were predominant during acute/early infection. Although CTL responses to a few persistent epitopes developed over the first two months of infection, they proliferated slowly. As CTL epitopes were replaced by mutational variants, the corresponding responses immediately declined, most rapidly in the cases of strongly selected epitopes. CTL recognition of epitope variants, via cross-reactivity and de novo responses, was common throughout the period of study. Our data demonstrate that HIV-specific CTL responses, especially in the critical acute/early stage, were focused on regions that are prone to escape. Failure of CTL responses to strongly target functional or structurally critical regions of the virus, as well as the sequential cascade of CTL responses, followed closely by viral escape and decline of the corresponding responses, likely contribute to a lack of sustainable viral suppression. Focusing early and rapidly proliferating CTL on persistent epitopes may be essential for durable viral control in HIV-1 infection
    • …
    corecore