61,775 research outputs found

    Combined sun-acquisition and sun gate-sensor system for spacecraft attitude control

    Get PDF
    Arrangement combines acquisition and gate functions and reduces sensitivity so that attitude control is effective regardless of changes in solar intensity. There are five photoconductive detectors all electrically interconnected. Detectors are so positioned that, regardless of spacecraft orientation at any instant of interest, at least one detector is illuminated

    Improved optical lens system

    Get PDF
    Objective lens produces a backwardly curving image of a star field that matches the similarly curved surface of the photocathode of an image dissector tube. Lens eliminates the need for a fiber-optics translation between the flat plane image and curved photocathode

    Finite Element Simulation of Light Propagation in Non-Periodic Mask Patterns

    Full text link
    Rigorous electromagnetic field simulations are an essential part for scatterometry and mask pattern design. Today mainly periodic structures are considered in simulations. Non-periodic structures are typically modeled by large, artificially periodified computational domains. For systems with a large radius of influence this leads to very large computational domains to keep the error sufficiently small. In this paper we review recent advances in the rigorous simulation of isolated structures embedded into a surrounding media. We especially address the situation of a layered surrounding media (mask or wafer) with additional infinite inhomogeneities such as resist lines. Further we detail how to extract the far field information needed for the aerial image computation in the non-periodic setting.Comment: Proceedings SPIE conference Photomask Japan (2008

    Mariner Mars 1969 sun sensor development

    Get PDF
    Photodetector and sun sensor development for Mariner Mars 1969 attitude control syste

    Variable-beamwidth antenna without moving parts

    Get PDF
    Basic configuration consists of large parabolic dish reflector, smaller hyperboloidal subreflector, and two sets of monopulse feeds located in conjugate focal region on boresight axis of dish

    Automatic design of optical systems by digital computer

    Get PDF
    Computer program uses geometrical optical techniques and a least squares optimization method employing computing equipment for the automatic design of optical systems. It evaluates changes in various optical parameters, provides comprehensive ray-tracing, and generally determines the acceptability of the optical system characteristics

    Sun direction detection system

    Get PDF
    One of the detectors is an illumination detector consisting of two spaced apart elongated strips with a strip of cadmium sulphide (Cds) deposited therebetween. Whenever the line image impinges the CdS strip, the resistance between the two other strips is relatively low, while being high when the line image is outside the field of view of the illumination detector. Also included is a sun angle detector which consists of a vapor deposited resistor strip connected at one end to plus 10v and at the other end to minus 10v. Spaced apart from the resistor strip is an elongated strip of low resistance material acting as an output strip, with a CdS strip between the two strips. When the line image is within the field of view of the sun angle detector, the output voltage at the output strip depends on the position of the line image across the sun angle detector

    FORTRAN optical lens design program

    Get PDF
    Computer program uses the principles of geometrical optics to design optical systems containing up to 100 planes, conic or polynomial aspheric surfaces, 7 object points, 6 colors, and 200 rays. This program can be used for the automatic design of optical systems or for the evaluation of existing optical systems

    Redesign and cascade tests of a supercritical controlled diffusion stator blade-section

    Get PDF
    A supercritical stator blade section, previously tested in cascade, and characterized by a flat-roof-top suction surface Mach number distribution, has been redesigned and retested. At near design conditions, the losses and air turning were improved over the original blade by 50 percent and 7 percent respectively. The key element in the improved performance was a small blade reshaping. This produced a continuous flow acceleration over the first one-third chord of the suction surface which successfully prevented a premature laminar separation bubble. Several recently available inviscid analysis and one fully viscous (Navier-Stokes) analysis code were used in the redesign process. The validity of these codes was enhanced by the test results

    Reduced basis method for computational lithography

    Full text link
    A bottleneck for computational lithography and optical metrology are long computational times for near field simulations. For design, optimization, and inverse scatterometry usually the same basic layout has to be simulated multiple times for different values of geometrical parameters. The reduced basis method allows to split up the solution process of a parameterized model into an expensive offline and a cheap online part. After constructing the reduced basis offline, the reduced model can be solved online very fast in the order of seconds or below. Error estimators assure the reliability of the reduced basis solution and are used for self adaptive construction of the reduced system. We explain the idea of reduced basis and use the finite element solver JCMsuite constructing the reduced basis system. We present a 3D optimization application from optical proximity correction (OPC).Comment: BACUS Photomask Technology 200
    corecore