22,592 research outputs found

    Effect of the Spatial Dispersion on the Shape of a Light Pulse in a Quantum Well

    Full text link
    Reflectance, transmittance and absorbance of a symmetric light pulse, the carrying frequency of which is close to the frequency of interband transitions in a quantum well, are calculated. Energy levels of the quantum well are assumed discrete, and two closely located excited levels are taken into account. A wide quantum well (the width of which is comparable to the length of the light wave, corresponding to the pulse carrying frequency) is considered, and the dependance of the interband matrix element of the momentum operator on the light wave vector is taken into account. Refractive indices of barriers and quantum well are assumed equal each other. The problem is solved for an arbitrary ratio of radiative and nonradiative lifetimes of electronic excitations. It is shown that the spatial dispersion essentially affects the shapes of reflected and transmitted pulses. The largest changes occur when the radiative broadening is close to the difference of frequencies of interband transitions taken into account.Comment: 7 pages, 5 figure

    Influence of Anomalous Dispersion on Optical Characteristics of Quantum Wells

    Full text link
    Frequency dependencies of optical characteristics (reflection, transmission and absorption of light) of a quantum well are investigated in a vicinity of interband resonant transitions in a case of two closely located excited energy levels. A wide quantum well in a quantizing magnetic field directed normally to the quantum-well plane, and monochromatic stimulating light are considered. Distinctions between refraction coefficients of barriers and quantum well, and a spatial dispersion of the light wave are taken into account. It is shown that at large radiative lifetimes of excited states in comparison with nonradiative lifetimes, the frequency dependence of the light reflection coefficient in the vicinity of resonant interband transitions is defined basically by a curve, similar to the curve of the anomalous dispersion of the refraction coefficient. The contribution of this curve weakens at alignment of radiative and nonradiative times, it is practically imperceptible at opposite ratio of lifetimes . It is shown also that the frequency dependencies similar to the anomalous dispersion do not arise in transmission and absorption coefficients.Comment: 10 pages, 6 figure

    Profile alterations of a symmetrical light pulse coming through a quantum well

    Full text link
    The theory of a response of a two-energy-level system, irradiated by symmetrical light pulses, has been developed.(Suchlike electronic system approximates under the definite conditions a single ideal quantum well (QW) in a strong magnetic field {\bf H}, directed perpendicularly to the QW's plane, or in magnetic field absence.) The general formulae for the time-dependence of non-dimensional reflection {\cal R}(t), absorption {\cal A}(t) and transmission {\cal T}(t) of a symmetrical light pulse have been obtained. It has been shown that the singularities of three types exist on the dependencies {\cal R}(t), {\cal A}(t), {\cal T}(t). The oscillating time dependence of {\cal R}(t), {\cal A}(t), {\cal T}(t) on the detuning frequency \Delta\omega=\omega_l-\omega_0 takes place. The oscillations are more easily observable when \Delta\omega\simeq\gamma_l. The positions of the total absorption, reflection and transparency singularities are examined when the frequency \omega_l is detuned.Comment: 9 pages, 13 figures with caption

    Praziquantel in clonorchiasis and opisthorchiasis

    Get PDF
    A single stool examination revealed pathogenic intestinal parasites in 462 (58%) of 796 vietnamese and cambodian refugees. 56 (7.0%) were infected with Clonorchis sinensis and/or Opisthorchis viverrini. These patients received Praziquantel in a dosage of 20 mg/kg bwt. p.day on 3 consecutive days. Parasitological controls were completed after 12 months. No further excretion of eggs could be detected in 88% of the patients. Concurrent infections with other trematodes and cestodes were also cured. Nematode infections remained uninfluenced. No change of haematological and biochemical parameters could be observed during therapy. Diarrhea and epigastric pain were common side effects, which are probably not effects of the drug itself. They rather seem to be due to the release of parasitic antigens. This is also indicated by a further increase of circulating Ig E after therapy

    Principals of the theory of light reflection and absorption by low-dimensional semiconductor objects in quantizing magnetic fields at monochromatic and pulse excitations

    Full text link
    The bases of the theory of light reflection and absorption by low-dimensional semiconductor objects (quantum wells, wires and dots) at both monochromatic and pulse irradiations and at any form of light pulses are developed. The semiconductor object may be placed in a stationary quantizing magnetic field. As an example the case of normal light incidence on a quantum well surface is considered. The width of the quantum well may be comparable to the light wave length and number of energy levels of electronic excitations is arbitrary. For Fourier-components of electric fields the integral equation (similar to the Dyson-equation) and solutions of this equation for some individual cases are obtained.Comment: 14 page

    Low-energy models for correlated materials: bandwidth renormalization from Coulombic screening

    Full text link
    We provide a prescription for constructing Hamiltonians representing the low energy physics of correlated electron materials with dynamically screened Coulomb interactions. The key feature is a renormalization of the hopping and hybridization parameters by the processes that lead to the dynamical screening. The renormalization is shown to be non-negligible for various classes of correlated electron materials. The bandwidth reduction effect is necessary for connecting models to materials behavior and for making quantitative predictions for low-energy properties of solids.Comment: 4 pages, 2 figure

    Smart Materials as Intelligent Insulation

    No full text
    In order to provide a robust infrastructure for the transmission and distribution of electrical power, understanding and monitoring equipment ageing and failure is of paramount importance. Commonly, failure is associated with degradation of the dielectric material; therefore the introduction of a smart moiety into the material is a potentially attractive means of continual condition monitoring. It is important that any introduction of smart groups into the dielectric does not have any detrimental effect on the desirable electrical and mechanical properties of the bulk material. Initial work focussed on the introduction of fluorophores into a model dielectric system. Fluorescence is known to be a visible effect even at very low concentrations of active fluorophores and therefore was thought well suited to such an application. It was necessary both to optimise the active fluorophore itself and to determine the most appropriate manner in which to introduce the fluorophores into the insulating system. This presentation will describe the effect of introducing fluorophores into polymeric systems on the dielectric properties of the material and the findings thus far [1]. Alternative smart material systems will also be discussed along with the benefits and limitations of smart materials as electric field sensors

    Signatures of Dark Matter Scattering Inelastically Off Nuclei

    Full text link
    Direct dark matter detection focuses on elastic scattering of dark matter particles off nuclei. In this study, we explore inelastic scattering where the nucleus is excited to a low-lying state of 10-100 keV, with subsequent prompt de-excitation. We calculate the inelastic structure factors for the odd-mass xenon isotopes based on state-of-the-art large-scale shell-model calculations with chiral effective field theory WIMP-nucleon currents. For these cases, we find that the inelastic channel is comparable to or can dominate the elastic channel for momentum transfers around 150 MeV. We calculate the inelastic recoil spectra in the standard halo model, compare these to the elastic case, and discuss the expected signatures in a xenon detector, along with implications for existing and future experiments. The combined information from elastic and inelastic scattering will allow to determine the dominant interaction channel within one experiment. In addition, the two channels probe different regions of the dark matter velocity distribution and can provide insight into the dark halo structure. The allowed recoil energy domain and the recoil energy at which the integrated inelastic rates start to dominate the elastic channel depend on the mass of the dark matter particle, thus providing a potential handle to constrain its mass.Comment: 9 pages, 7 figures. Matches resubmitted version to Phys. Rev. D. One figure added; supplemental material (fits to the structure functions) added as an Appendi
    • …
    corecore