60,780 research outputs found

    GRBs and fundamental physics

    Full text link
    Gamma-ray bursts (GRBs) are short and intense flashes at the cosmological distances, which are the most luminous explosions in the Universe. The high luminosities of GRBs make them detectable out to the edge of the visible universe. So, they are unique tools to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal evolution of the Universe. First, they can be used to constrain the history of cosmic acceleration and the evolution of dark energy in a redshift range hardly achievable by other cosmological probes. Second, long GRBs are believed to be formed by collapse of massive stars. So they can be used to derive the high-redshift star formation rate, which can not be probed by current observations. Moreover, the use of GRBs as cosmological tools could unveil the reionization history and metal evolution of the Universe, the intergalactic medium (IGM) properties and the nature of first stars in the early universe. But beyond that, the GRB high-energy photons can be applied to constrain Lorentz invariance violation (LIV) and to test Einstein's Equivalence Principle (EEP). In this paper, we review the progress on the GRB cosmology and fundamental physics probed by GRBs.Comment: 38 pages, 18 figures, Review based on ISSI workshop "Gamma-Ray Bursts: a Tool to Explore the Young Universe" (2015, Beijing, China), accepted for publication in Space Science Review

    Small radii of neutron stars as an indication of novel in-medium effects

    Full text link
    At present, neutron star radii from both observations and model predictions remain very uncertain. Whereas different models can predict a wide range of neutron star radii, it is not possible for most models to predict radii that are smaller than about 10 km, thus if such small radii are established in the future they will be very difficult to reconcile with model estimates. By invoking a new term in the equation of state that enhances the energy density, but leaves the pressure unchanged we simulate the current uncertainty in the neutron star radii. This new term can be possibly due to the exchange of the weakly interacting light U-boson with appropriate in-medium parameters, which does not compromise the success of the conventional nuclear models. The validity of this new scheme will be tested eventually by more precise measurements of neutron star radii.Comment: EPJA (2015) in pres

    Primary-Filling e/3 Quasiparticle Interferometer

    Full text link
    We report experimental realization of a quasiparticle interferometer where the entire system is in 1/3 primary fractional quantum Hall state. The interferometer consists of chiral edge channels coupled by quantum-coherent tunneling in two constrictions, thus enclosing an Aharonov-Bohm area. We observe magnetic flux and charge periods h/e and e/3, equivalent to creation of one quasielectron in the island. Quantum theory predicts a 3h/e flux period for charge e/3, integer statistics particles. Accordingly, the observed periods demonstrate the anyonic statistics of Laughlin quasiparticles
    corecore