181 research outputs found
Wavenumber dependence of structural alpha relaxation in a molecular liquid
Structural alpha relaxation in liquid orthoterphenyl is studied by means of
coherent neutron time-of-flight and backscattering spectroscopy over a large
temperature range. Not only amplitude and relaxation time but also the spectral
line shape show a significant variation with wavenumber. As expected from mode
coupling theory, these variations are correlated with the static structure
factor. Even far above the melting point, alpha relaxation remains
non-exponential.Comment: 6 pages of LaTeX, 4 figure
Fast relaxation in a fragile liquid under pressure
The incoherent dynamic structure factor of ortho-terphenyl has been measured
by neutron time-of-flight and backscattering technique in the pressure range
from 0.1 MPa to 240 MPa for temperatures between 301 K and 335 K.
Tagged-particle correlations in the compressed liquid decay in two steps. The
alpha-relaxation lineshape is independent of pressure, and the relaxation time
proportional to viscosity. A kink in the amplitude f_Q(P) reveals the onset of
beta relaxation. The beta-relaxation regime can be described by the
mode-coupling scaling function; amplitudes and time scales allow a consistent
determination of the critical pressure P_c(T). alpha and beta relaxation depend
in the same way on the thermodynamic state; close to the mode-coupling
cross-over, this dependence can be parametrised by an effective coupling Gamma
~ n*T**{-1/4}.Comment: 4 Pages of RevTeX, 4 figures (submitted to Physical Review Letters
Molecular dynamics simulation of the fragile glass former ortho-terphenyl: a flexible molecule model
We present a realistic model of the fragile glass former orthoterphenyl and
the results of extensive molecular dynamics simulations in which we
investigated its basic static and dynamic properties. In this model the
internal molecular interactions between the three rigid phenyl rings are
described by a set of force constants, including harmonic and anharmonic terms;
the interactions among different molecules are described by Lennard-Jones
site-site potentials. Self-diffusion properties are discussed in detail
together with the temperature and momentum dependencies of the
self-intermediate scattering function. The simulation data are compared with
existing experimental results and with the main predictions of the Mode
Coupling Theory.Comment: 20 pages and 28 postscript figure
Test of the semischematic model for a liquid of linear molecules
We apply to a liquid of linear molecules the semischematic mode-coupling
model, previously introduced to describe the center of mass (COM) slow dynamics
of a network-forming molecular liquid. We compare the theoretical predictions
and numerical results from a molecular dynamics simulation, both for the time
and the wave-vector dependence of the COM density-density correlation function.
We discuss the relationship between the presented analysis and the results from
an approximate solution of the equations from molecular mode-coupling theory
[R. Schilling and T. Scheidsteger, Phys. Rev. E 56 2932 (1997)].Comment: Revtex, 10 pages, 4 figure
Crystal-like high frequency phonons in the amorphous phases of solid water
The high frequency dynamics of low- (LDA) and high-density amorphous-ice
(HDA) and of cubic ice (I_c) has been measured by inelastic X-ray Scattering
(IXS) in the 1-15 nm^{-1} momentum transfer (Q) range. Sharp phonon-like
excitations are observed, and the longitudinal acoustic branch is identified up
to Q = 8nm^{-1} in LDA and I_c and up to 5nm^{-1} in HDA. The narrow width of
these excitations is in sharp contrast with the broad features observed in all
amorphous systems studied so far. The "crystal-like" behavior of amorphous
ices, therefore, implies a considerable reduction in the number of decay
channels available to sound-like excitations which is assimilated to low local
disorder.Comment: 4 pages, 3 figure
Dynamics in a supercooled molecular liquid: Theory and Simulations
We report extensive simulations of liquid supercooled states for a simple
three-sites molecular model, introduced by Lewis and Wahnstr"om [L. J. Lewis
and G. Wahnstr"om, Phys. Rev. E 50, 3865 (1994)] to mimic the behavior of
ortho-terphenyl. The large system size and the long simulation length allow to
calculate very precisely --- in a large q-vector range --- self and collective
correlation functions, providing a clean and simple reference model for
theoretical descriptions of molecular liquids in supercooled states. The time
and wavevector dependence of the site-site correlation functions are compared
with detailed predictions based on ideal mode-coupling theory, neglecting the
molecular constraints. Except for the wavevector region where the dynamics is
controlled by the center of mass (around 9 nm-1), the theoretical predictions
compare very well with the simulation data.
Ice XII in its second regime of metastability
We present neutron powder diffraction results which give unambiguous evidence
for the formation of the recently identified new crystalline ice phase[Lobban
et al.,Nature, 391, 268, (1998)], labeled ice XII, at completely different
conditions. Ice XII is produced here by compressing hexagonal ice I_h at T =
77, 100, 140 and 160 K up to 1.8 GPa. It can be maintained at ambient pressure
in the temperature range 1.5 < T < 135 K. High resolution diffraction is
carried out at T = 1.5 K and ambient pressure on ice XII and accurate
structural properties are obtained from Rietveld refinement. At T = 140 and 160
K additionally ice III/IX is formed. The increasing amount of ice III/IX with
increasing temperature gives an upper limit of T ~ 150 K for the successful
formation of ice XII with the presented procedure.Comment: 3 Pages of RevTeX, 3 tables, 3 figures (submitted to Physical Review
Letters
Atomic Transport in Dense, Multi-Component Metallic Liquids
Pd43Ni10Cu27P0 has been investigated in its equilibrium liquid state with
incoherent, inelastic neutron scattering. As compared to simple liquids, liquid
PdNiCuP is characterized by a dense packing with a packing fraction above 0.5.
The intermediate scattering function exhibits a fast relaxation process that
precedes structural relaxation. Structural relaxation obeys a time-temperature
superposition that extends over a temperature range of 540K. The mode-coupling
theory of the liquid to glass transition (MCT) gives a consistent description
of the dynamics which governs the mass transport in liquid PdNiCuP alloys. MCT
scaling laws extrapolate to a critical temperature Tc at about 20% below the
liquidus temperature. Diffusivities derived from the mean relaxation times
compare well with Co diffusivities from recent tracer diffusion measurements
and diffsuivities calculated from viscosity via the Stokes-Einstein relation.
In contrast to simple metallic liquids, the atomic transport in dense, liquid
PdNiCuP is characterized by a drastical slowing down of dynamics on cooling, a
q^{-2} dependence of the mean relaxation times at intermediate q and a
vanishing isotope effect as a result of a highly collective transport
mechanism. At temperatures as high as 2Tc diffusion in liquid PdNiCuP is as
fast as in simple liquids at the melting point. However, the difference in the
underlying atomic transport mechanism indicates that the diffusion mechanism in
liquids is not controlled by the value of the diffusivity but rather by that of
the packing fraction
Molecular mode-coupling theory applied to a liquid of diatomic molecules
We study the molecular mode coupling theory for a liquid of diatomic
molecules. The equations for the critical tensorial nonergodicity parameters
and the critical amplitudes of the - relaxation
are solved up to a cut off = 2 without any
further approximations.
Here are indices of spherical harmonics. Contrary to previous studies,
where additional approximations were applied, we find in agreement with
simulations, that all molecular degrees of freedom vitrify at a single
temperature . The theoretical results for the non ergodicity parameters
and the critical amplitudes are compared with those from simulations. The
qualitative agreement is good for all molecular degrees of freedom. To study
the influence of the cut off on the non ergodicity parameter, we also calculate
the non ergodicity parameters for an upper cut off . In addition we
also propose a new method for the calculation of the critical nonergodicity
parameterComment: 27 pages, 17 figure
Static and Dynamic Properties of a Viscous Silica Melt Molecular Dynamics Computer Simulations
We present the results of a large scale molecular dynamics computer
simulation in which we investigated the static and dynamic properties of a
silica melt in the temperature range in which the viscosity of the system
changes from O(10^-2) Poise to O(10^2) Poise. We show that even at temperatures
as high as 4000 K the structure of this system is very similar to the random
tetrahedral network found in silica at lower temperatures. The temperature
dependence of the concentration of the defects in this network shows an
Arrhenius law. From the partial structure factors we calculate the neutron
scattering function and find that it agrees very well with experimental neutron
scattering data. At low temperatures the temperature dependence of the
diffusion constants shows an Arrhenius law with activation energies which
are in very good agreement with the experimental values. With increasing
temperature we find that this dependence shows a cross-over to one which can be
described well by a power-law, D\propto (T-T_c)^gamma. The critical temperature
T_c is 3330 K and the exponent gamma is close to 2.1. Since we find a similar
cross-over in the viscosity we have evidence that the relaxation dynamics of
the system changes from a flow-like motion of the particles, as described by
the ideal version of mode-coupling theory, to a hopping like motion. We show
that such a change of the transport mechanism is also observed in the product
of the diffusion constant and the life time of a Si-O bond, or the space and
time dependence of the van Hove correlation functions.Comment: 30 pages of Latex, 14 figure
- …