290,239 research outputs found
Cosmological model of the interaction between dark matter and dark energy
In this paper, we test the dark matter-dark energy interacting cosmological
model with a dynamic equation of state , using
type Ia supernovae (SNe Ia), Hubble parameter data, baryonic acoustic
oscillation (BAO) measurements, and the cosmic microwave background (CMB)
observation. This interacting cosmological model has not been studied before.
The best-fitted parameters with uncertainties are , , and
with . At the
confidence level, we find , which means that the energy transfer
prefers from dark matter to dark energy. We also find that the SNe Ia are in
tension with the combination of CMB, BAO and Hubble parameter data. The
evolution of indicates that this interacting model is a
good approach to solve the coincidence problem, because the
decrease with scale factor . The transition redshift is in this model.Comment: 6 pages, 6 figures, published in A&
Analysis of cracks emanating from a circular hole in unidirectional fiber reinforced composites, part 2
An analytical method is developed for cracks emanating from a circular hole in an off-axis unidirectional fiber-reinforced composite. The method which is formulated by using conservation laws of elasticity and fundamental relationships in anisotropic fracture mechanics, provides a convenient and accurate means to examine the complicated crack behavior, when used in conjunction with a suitable numerical scheme such as the finite element method. The formulation is eventually reduced to a system of linear algebraic equations of mixed-mode stress intensity factors. Fracture parameters, describing crack-tip deformation and fracture in the composite, are obtained explicitly. Effects of material anisotropy and crack/hole geometry are examined also. Of particular interest are the energy release rates associated with crack extension; their values are evaluated for various cases. Results show that mixed-mode stress intensity factors and energy release rates associated with the cracks emanating from a hole change very appreciably with fiber orientation in the composite. K sub 1 and G increase monotonically with increasing theta; but K sub 2 reaches its maximum at theta = 45 deg, and then decreases gradually as theta increases further
Investigation of the utilisation of social networks in e-learning at universities
Over the years universities have considered to use social networks for learning purposes as most of their students now engage on them. However, questions on the impact social networks would have on learning and how they can be utilised further for more effective teaching and learning are still unclear. To solve these questions, an in-depth investigation has been conducted to understand the benefits and drawback of social network features available for students. The investigation results show that students strongly believe that social network features will help enhance learning and the key ways of utilising such features have been suggested
Analysis of interface cracks in adhesively bonded lap shear joints, part 4
Conservation laws of elasticity for nonhomogeneous materials were developed and were used to study the crack behavior in adhesively bonded lap shear joints. By using these laws and the fundamental relationships in fracture mechanics of interface cracks, the problem is reduced to a pair of linear algebraic equations, and stress intensity solutions can be determined directly by information extracted from the far field. The numerical results obtained show that: (1) in the lap-shear joint with a given adherend, the opening-mode stress intensity factor, (K sub 1) is always larger than that of the shearing-mode (K sub 2); (2) (K sub 1) is not sensitive to adherent thickness abut (K sub 2) increases rapidly with increasing thickness; and (3) (K sub 1) and (K sub 2) increase simultaneously as the interfacial crack length increases
Surface crack growth in fiber composites
The results of an experimental study of damage extension and failure in glass and graphite/epoxy laminates containing partially through-thickness surface cracks are presented. The laminates studied are divided between those containing four plies, 90/0/0/90, 15/-15/-15/15, and 45/-45/-45/45, and those containing 12-16 plies of the general configurations 0/90, + or - 45, and 0/+ or - 60. Most of the results are for surface cracks of various lengths and several depths. Stable damage extension in laminates containing surface cracks is predominantly delamination between plies, and tends to be much more extensive prior to failure than is the case with through-thickness cracks, resulting in approximately notch-insensitive behavior in most cases. A greater tendency for notch-sensitive behavior is found for 0/90 graphite/epoxy laminates for which stable damage extension is more limited. The rate of damage extension with increasing applied stress depends upon the composite system and ply configuration as well as the crack length and depth. An approximate semiempirical method is presented for estimating the growth rate of large damage-regions
Analysis of delamination in unidirectional and crossplied fiber composites containing surface cracks
A two-dimensional hybrid stress finite element analysis is described which was used to study the local stress field around delamination cracks in composite materials. The analysis employs a crack tip singularity element which is embedded in a matrix interlayer between plies of the laminate. Results are given for a unidirectional graphite/epoxy laminate containing a delamination emanating from a surface crack through the outside ply. The results illustrate several aspects of delamination cracks: (1) the localization of the singular stress domain within the interlayer; (2) the local concentration of stress in the ply adjacent to the crack; (3) the nature of the transverse normal and interlaminar shear stress distributions; and (4) the relative magnitudes of K sub 1 and K sub 2 associated with the delamination. A simple example of the use of the analysis in predicting delamination crack growth is demonstrated for a glass/epoxy laminate. The comparisons with experimental data show good agreement
Measuring dark energy with the correlation of gamma-ray bursts using model-independent methods
In this paper, we use two model-independent methods to standardize long
gamma-ray bursts (GRBs) using the correlation, where
is the isotropic-equivalent gamma-ray energy and is
the spectral peak energy. We update 42 long GRBs and try to make constraint on
cosmological parameters. The full sample contains 151 long GRBs with redshifts
from 0.0331 to 8.2. The first method is the simultaneous fitting method. The
extrinsic scatter is taken into account and assigned to the
parameter . The best-fitting values are ,
, and in the flat
CDM model. The constraint on is at the
1 confidence level. If reduced method is used, the best-fit
results are , and . The
second method is using type Ia supernovae (SNe Ia) to calibrate the correlation. We calibrate 90 high-redshift GRBs in the redshift
range from 1.44 to 8.1. The cosmological constraints from these 90 GRBs are
for flat CDM, and
and for non-flat
CDM. For the combination of GRB and SNe Ia sample, we obtain
and for the flat CDM, and
for the non-flat CDM, the results are ,
and . These results from
calibrated GRBs are consistent with that of SNe Ia. Meanwhile, the combined
data can improve cosmological constraints significantly, comparing to SNe Ia
alone. Our results show that the correlation is
promising to probe the high-redshift universe.Comment: 10 pages, 6 figures, 4 table, accepted by A&A. Table 4 contains
calibrated distance moduli of GRB
- …