374 research outputs found

    Heavy-meson physics and flavour violation with a single generation

    Full text link
    We study flavour-violating processes which involve heavy B- and D-mesons and are mediated by Kaluza-Klein modes of gauge bosons in a previously suggested model where three generations of the Standard Model fermions originate from a single generation in six dimensions. We find the bound on the size R of the extra spatial dimensions 1/R>3.3 TeV, which arises from the three-body decay B_s to K mu e. Due to the still too low statistics this bound is much less stringent than the constraint arising from K to mu e, 1/R>64 TeV, which was found in a previous work (Frere et al., JHEP, 2003). Nevertheless, we argue that a clear signature of the model would be an observation of K to mu e and B_s to K mu e decays without observations of other flavour and lepton number changing processes at the same precision level.Comment: 15 page

    Fermionic zero modes in gauge and gravity backgrounds On T2T^2

    Full text link
    In this note we study fermionic zero modes in gauge and gravity backgrounds taking a two dimensional compact manifold T2T^2 as extra dimensions. The result is that there exist massless Dirac fermions which have normalizable zero modes under quite general assumptions about these backgrounds on the bulk. Several special cases of gauge background on the torus are discussed and some simple fermionic zero modes are obtained.Comment: 8 pages, no figures, v2: more references, accepted by Mod.Phys.Lett.

    See-saw neutrino masses and large mixing angles in the vortex background on a sphere

    Full text link
    In the vortex background on a sphere, a single 6-dimensional fermion family gives rise to 3 zero-modes in the 4-dimensional point of view, which may explain the replication of families in the Standard Model. Previously, it had been shown that realistic hierarchical mass and mixing patterns can be reproduced for the quarks and the charged leptons. Here, we show that the addition of a single heavy 6-dimensional field that is gauge singlet, unbound to the vortex, and embedded with a bulk Majorana mass enables to generate 4D Majorana masses for the light neutrinos through the see-saw mechanism. The scheme is very predictive. The hierarchical structure of the fermion zero-modes leads automatically to an inverted pseudo-Dirac mass pattern, and always predicts one maximal angle in the neutrino see-saw matrix. It is possible to obtain a second large mixing angle from either the charged lepton or the neutrino sector, and we demonstrate that this model can fit all observed data in neutrino oscillations experiments. Also, U_{e3} is found to be of the order ~0.1.Comment: 23 pages, 1 figur

    BRS Cedro e BRS Jatobá: cultivares de algodoeiro herbáceo recomendadas para os cerrados do Meio-Norte do Brasil.

    Get PDF
    bitstream/CPAMN-2009-09/18166/1/CT155.pd

    FCNC in left-right symmetric theories and constraints on the right-handed scale

    Get PDF
    We revise the limits on the FCNC higgses in manifestly left-right symmetric theories. It is shown that the combination of the Kobayashi-Maskawa CP-violation with the tree level ΔS=2\Delta S=2 higgs exchange gives very large contribution to the CP-violating ϵ\epsilon parameter. It leads to the new strong constraint on the FCNC higgs mass, M>50- 100 TeV, enhanced by factor of the order mt/mc\sqrt{m_t/m_c}. Being addressed to the supersymmetric left-right models, FCNC problem requires both right-handed scale and supersymmetric mass parameters be heavier than 50 TeV for tanβ1tan\beta\sim 1. The most relaxed case corresponds to tanβ2030tan\beta\sim 20- 30 where right-handed scale can be of the order of few TeV.Comment: 11 pages, latex, 3 figure

    Development and validation of the BRIGHTLIGHT Survey, a patient-reported experience measure for young people with cancer

    Get PDF
    BACKGROUND: Patient experience is increasingly used as an indicator of high quality care in addition to more traditional clinical end-points. Surveys are generally accepted as appropriate methodology to capture patient experience. No validated patient experience surveys exist specifically for adolescents and young adults (AYA) aged 13-24 years at diagnosis with cancer. This paper describes early work undertaken to develop and validate a descriptive patient experience survey for AYA with cancer that encompasses both their cancer experience and age-related issues. We aimed to develop, with young people, an experience survey meaningful and relevant to AYA to be used in a longitudinal cohort study (BRIGHTLIGHT), ensuring high levels of acceptability to maximise study retention. METHODS: A three-stage approach was employed: Stage 1 involved developing a conceptual framework, conducting literature/Internet searches and establishing content validity of the survey; Stage 2 confirmed the acceptability of methods of administration and consisted of four focus groups involving 11 young people (14-25 years), three parents and two siblings; and Stage 3 established survey comprehension through telephone-administered cognitive interviews with a convenience sample of 23 young people aged 14-24 years. RESULT: Stage 1: Two-hundred and thirty eight questions were developed from qualitative reports of young people's cancer and treatment-related experience. Stage 2: The focus groups identified three core themes: (i) issues directly affecting young people, e.g. impact of treatment-related fatigue on ability to complete survey; (ii) issues relevant to the actual survey, e.g. ability to answer questions anonymously; (iii) administration issues, e.g. confusing format in some supporting documents. Stage 3: Cognitive interviews indicated high levels of comprehension requiring minor survey amendments. CONCLUSION: Collaborating with young people with cancer has enabled a survey of to be developed that is both meaningful to young people but also examines patient experience and outcomes associated with specialist cancer care. Engagement of young people throughout the survey development has ensured the content appropriately reflects their experience and is easily understood. The BRIGHTLIGHT survey was developed for a specific research project but has the potential to be used as a TYA cancer survey to assess patient experience and the care they receive

    Enhanced baryon number violation due to cosmological defects with localized fermions along extra dimension

    Full text link
    We propose a new scenario of baryon number violation in models with extra dimensions. In the true vacuum, baryon number is almost conserved due to the localization mechanism of matter fields, which suppresses the interactions between quarks and leptons. We consider several types of cosmological defects in four-dimensional spacetime that shift the center of the localized matter fields, and show that the magnitudes of the baryon number violating interactions are well enhanced. Application to baryogenesis is also discussed.Comment: 12pages, latex2e, added references, to appear in PR

    Unstable Heavy Majorana Neutrinos and Leptogenesis

    Get PDF
    We propose a new mechanism producing a non-vanishing lepton number asymmetry, based on decays of heavy Majorana neutrinos. If they are produced out of equilibrium, as occurs in preheating scenario, and are superpositions of mass eigenstates rapidly decaying, their decay rates contains interference terms provided the mass differences Δm\Delta m are small compared to widths Γ\Gamma. The resulting lepton asymmetry, which is the analogue of the time-integrated CP asymmetry in B0Bˉ0B^0-\bar{B}^0 system, is found to be proportional to Δm/Γ\Delta m/\Gamma.Comment: 18 pages, latex, revised version to be published in Phys. Rev.

    Supersymmetric Relations Among Electromagnetic Dipole Operators

    Full text link
    Supersymmetric contributions to all leptonic electromagnetic dipole operators have essentially identical diagramatic structure. With approximate slepton universality this allows the muon anomalous magnetic moment to be related to the electron electric dipole moment in terms of supersymmetric phases, and to radiative flavor changing lepton decays in terms of small violations of slepton universality. If the current discrepancy between the measured and Standard Model values of the muon anomalous magnetic moment is due to supersymmetry, the current bound on the electron electric dipole moment then implies that the phase of the electric dipole operator is less than 2×1032 \times 10^{-3}. Likewise the current bound on μeγ\mu \to e \gamma decay implies that the fractional selectron-smuon mixing in the left-left mass squared matrix, \delta m_{\smuon \selectron}^2 / m_{\slepton}^2, is less than 10410^{-4}. These relations and constraints are fairly insensitive to details of the superpartner spectrum for moderate to large tanβ\tan \beta.Comment: Latex, 38 pages, 2 figure

    Effects of SO(10) D-Term on Yukawa Unification and Unstable Minima of the Supersymmetric Scalar Potential

    Full text link
    We study the effects of SO(10) D-terms on the allowed parameter space (APS) in models with tbτt - b - \tau and bτb - \tau Yukawa unifiction. The former is allowed only for moderate values of the D-term, if very precise (\le 5%) unification is required. Next we constrain the parameter space by looking for different dangerous directions where the scalar potential may be unbounded from below (UFB1 and UFB3). The common trilinear coupling A0A_0 plays a significant role in constraing the APS. For very precise tbτt - b - \tau Yukawa unification, m16<orA0<orm16-m_{16} < or \approx A_0 < or \approx m_{16} can be probed at the LHC, where m16m_{16} is the common soft breaking mass for the sfermions. Moreover, an interesting mass hierarchy with very heavy sfermions but light gauginos, which is strongly disfavoured in models without D-terms, becomes fairly common in the presence of the D-terms. The APS exhibits interesting characteristics if m16m_{16} is not the same as the soft breaking mass m10m_{10} for the Higgs sector. In bτb - \tau unification models with D-terms, the APS consistent with Yukawa unification and radiative electroweak symmetry breaking, increases as the UFB1 constraint becomes weaker. However for A00A_0 \leq 0, a stronger UFB3 condition still puts, for a given m16m_{16}, a stringent upper bound on the common gaugino mass (m1/2m_{1/2}) and a lower bound on m16m_{16} for a given m1/2m_{1/2}. The effects of sign of μ\mu on Yukawa unification and UFB constraints are also discussed.Comment: Plain Latex, 22 pages, 11 figures. Small changes in the abstract, the pattern of discussion changed signifiantly, no change in the figures and results, a few new references added, version published in JP
    corecore