229 research outputs found

    GAPS IN THE HEISENBERG-ISING MODEL

    Full text link
    We report on the closing of gaps in the ground state of the critical Heisenberg-Ising chain at momentum π\pi. For half-filling, the gap closes at special values of the anisotropy Δ=cos(π/Q)\Delta= \cos(\pi/Q), QQ integer. We explain this behavior with the help of the Bethe Ansatz and show that the gap scales as a power of the system size with variable exponent depending on Δ\Delta. We use a finite-size analysis to calculate this exponent in the critical region, supplemented by perturbation theory at Δ0\Delta\sim 0. For rational 1/r1/r fillings, the gap is shown to be closed for {\em all} values of Δ\Delta and the corresponding perturbation expansion in Δ\Delta shows a remarkable cancellation of various diagrams.Comment: 12 RevTeX pages + 4 figures upon reques

    Spectral signature of short attosecond pulse trains

    Full text link
    We report experimental measurements of high-order harmonic spectra generated in Ar using a carrier-envelope-offset (CEO) stabilized 12 fs, 800nm laser field and a fraction (less than 10%) of its second harmonic. Additional spectral peaks are observed between the harmonic peaks, which are due to interferences between multiple pulses in the train. The position of these peaks varies with the CEO and their number is directly related to the number of pulses in the train. An analytical model, as well as numerical simulations, support our interpretation

    Excited states in the twisted XXZ spin chain

    Full text link
    We compute the finite size spectrum for the spin 1/2 XXZ chain with twisted boundary conditions, for anisotropy in the regime 0<γ<π/20< \gamma <\pi/2, and arbitrary twist θ\theta. The string hypothesis is employed for treating complex excitations. The Bethe Ansatz equtions are solved within a coupled non-linear integral equation approach, with one equation for each type of string. The root-of-unity quantum group invariant periodic chain reduces to the XXZ_1/2 chain with a set of twist boundary conditions (π/γZ\pi/\gamma\in Z, θ\theta an integer multiple of γ\gamma). For this model, the restricted Hilbert space corresponds to an unitary conformal field theory, and we recover all primary states in the Kac table in terms of states with specific twist and strings.Comment: 16 pages, Latex; added discussion on quantum group invariance and arbitrary magnon numbe

    Integrable impurities in Hubbard chain with the open boundary condition

    Full text link
    The Kondo problem of two impurities in 1D strongly correlated electron system within the framework of the open boundary Hubbard chain is solved and the impurities, coupled to the ends of the electron system, are introduced by their scattering matrices with electrons so that the boundary matrices satisfy the reflecting integrability condition. The finite size correction of the ground state energy is obtained due to the impurities. Exact expressions for the low temperature specific heat contributed by the charge and spin parts of the magnetic impurities are derived. The Pauli susceptibility and the Kondo temperature are given explicitly. The Kondo temperature is inversely proportional to the density of electrons.Comment: 6 pages, Revtex, To appear in Europhysics Letter

    Kondo screening cloud effects in mesoscopic devices

    Full text link
    We study how finite size effects may appear when a quantum dot in the Kondo Coulomb blockade regime is embedded into a mesoscopic device with finite wires. These finite size effects appear when the size of the mesoscopic device containing the quantum dot is of the order of the size of Kondo cloud and affect all thermodynamic and transport properties of the Kondo quantum dot. We also generalize our results to the experimentally relevant case where the wires contain several transverse modes/channels. Our results are based on perturbation theory, Fermi liquid theory and slave boson mean field theory.Comment: 19 pages, 9 figure

    Persistent Currents in the Heisenberg chain with a weak link

    Full text link
    The Heisenberg chain with a weak link is studied, as a simple example of a quantum ring with a constriction or defect. The Heisenberg chain is equivalent to a spinless electron gas under a Jordan-Wigner transformation. Using density matrix renormalization group and quantum Monte Carlo methods we calculate the spin/charge stiffness of the model, which determines the strength of the `persistent currents'. The stiffness is found to scale to zero in the weak link case, in agreement with renormalization group arguments of Eggert and Affleck, and Kane and Fisher.Comment: 14 pages, 7 figures, 2 tables, no changes to paper, author list changed on archiv

    Open t-J chain with boundary impurities

    Full text link
    We study integrable boundary conditions for the supersymmetric t-J model of correlated electrons which arise when combining static scattering potentials with dynamical impurities carrying an internal degree of freedom. The latter differ from the bulk sites by allowing for double occupation of the local orbitals. The spectrum of the resulting Hamiltonians is obtained by means of the algebraic Bethe Ansatz.Comment: LaTeX2e, 9p

    Hartree Fock Calculations in the Density Matrix Expansion Approach

    Get PDF
    The density matrix expansion is used to derive a local energy density functional for finite range interactions with a realistic meson exchange structure. Exchange contributions are treated in a local momentum approximation. A generalized Slater approximation is used for the density matrix where an effective local Fermi momentum is chosen such that the next to leading order off-diagonal term is canceled. Hartree-Fock equations are derived incorporating the momentum structure of the underlying finite range interaction. For applications a density dependent effective interaction is determined from a G-matrix which is renormalized such that the saturation properties of symmetric nuclear matter are reproduced. Intending applications to systems far off stability special attention is paid to the low density regime and asymmetric nuclear matter. Results are compared to predictions obtained from Skyrme interactions. The ground state properties of stable nuclei are well reproduced without further adjustments of parameters. The potential of the approach is further exemplified in calculations for A=100...140 tin isotopes. Rather extended neutron skins are found beyond 130Sn corresponding to solid layers of neutron matter surrounding a core of normal composition.Comment: Revtex, 29 pages including 14 eps figures, using epsfig.st

    Absence of backscattering at integrable impurities in one-dimensional quantum many-body systems

    Full text link
    We study interacting one dimensional (1D) quantum lattice gases with integrable impurities. These model Hamiltonians can be derived using the quantum inverse scattering method for inhomogeneous models and are by construction integrable. Absence of backscattering at the impurities is shown to be the characteristic feature of these disordered systems. The value of the effective carrier charge and the Sutherland-Shastry relation are derived for the half-filled XXX model and are shown to be independent of the impurity concentration and strength. For the half-filled XXZ model we show that there is no enhancement of the persistent currents for repulsive interactions. For attractive interactions we identify a crossover regime beyond which enhancement of the currents is observed.Comment: 14 RevTeX 3.0 pages with 1 PS-figure include

    Anti-Kondo resonance in transport through a quantum wire with a side-coupled quantum dot

    Full text link
    An interacting quantum dot side-coupled to a perfect quantum wire is studied. Transport through the quantum wire is investigated by using an exact sum rule and the slave-boson mean field treatment. It is shown that the Kondo effect provides a suppression of the transmission due to the destructive interference of the ballistic channel and the Kondo channel. At finite temperatures, anti-resonance behavior is found as a function of the quantum dot level position, which is interpreted as a crossover from the high temperature Kondo phase to the low temperature charge fluctuation phase.Comment: 4 pages Revtex, 3 eps figure
    corecore