54 research outputs found

    Impact of tetrachloroethylene-contaminated drinking water on the risk of breast cancer: Using a dose model to assess exposure in a case-control study

    Get PDF
    BACKGROUND: A population-based case-control study was undertaken in 1997 to investigate the association between tetrachloroethylene (PCE) exposure from public drinking water and breast cancer among permanent residents of the Cape Cod region of Massachusetts. PCE, a volatile organic chemical, leached from the vinyl lining of certain water distribution pipes into drinking water from the late 1960s through the early 1980s. The measure of exposure in the original study, referred to as the relative delivered dose (RDD), was based on an amount of PCE in the tap water entering the home and estimated with a mathematical model that involved only characteristics of the distribution system. METHODS: In the current analysis, we constructed a personal delivered dose (PDD) model that included personal information on tap water consumption and bathing habits so that inhalation, ingestion, and dermal absorption were also considered. We reanalyzed the association between PCE and breast cancer and compared the results to the original RDD analysis of subjects with complete data. RESULTS: The PDD model produced higher adjusted odds ratios than the RDD model for exposures > 50(th )and >75(th )percentile when shorter latency periods were considered, and for exposures < 50(th )and >90(th )percentile when longer latency periods were considered. Overall, however, the results from the PDD analysis did not differ greatly from the RDD analysis. CONCLUSION: The inputs that most heavily influenced the PDD model were initial water concentration and duration of exposure. These variables were also included in the RDD model. In this study population, personal factors like bath and shower temperature, bathing frequencies and durations, and water consumption did not differ greatly among subjects, so including this information in the model did not significantly change subjects' exposure classification

    Engineering supported membranes for cell biology

    Get PDF
    Cell membranes exhibit multiple layers of complexity, ranging from their specific molecular content to their emergent mechanical properties and dynamic spatial organization. Both compositional and geometrical organizations of membrane components are known to play important roles in life processes, including signal transduction. Supported membranes, comprised of a bilayer assembly of phospholipids on the solid substrate, have been productively served as model systems to study wide range problems in cell biology. Because lateral mobility of membrane components is readily preserved, supported lipid membranes with signaling molecules can be utilized to effectively trigger various intercellular reactions. The spatial organization and mechanical deformation of supported membranes can also be manipulated by patterning underlying substrates with modern micro- and nano-fabrication techniques. This article focuses on various applications and methods to spatially patterned biomembranes by means of curvature modulations and spatial reorganizations, and utilizing them to interface with live cells. The integration of biological components into synthetic devices provides a unique approach to investigate molecular mechanisms in cell biology

    Spatial variations in the incidence of breast cancer and potential risks associated with soil dioxin contamination in Midland, Saginaw, and Bay Counties, Michigan, USA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High levels of dioxins in soil and higher-than-average body burdens of dioxins in local residents have been found in the city of Midland and the Tittabawassee River floodplain in Michigan. The objective of this study is threefold: (1) to evaluate dioxin levels in soils; (2) to evaluate the spatial variations in breast cancer incidence in Midland, Saginaw, and Bay Counties in Michigan; (3) to evaluate whether breast cancer rates are spatially associated with the dioxin contamination areas.</p> <p>Methods</p> <p>We acquired 532 published soil dioxin data samples collected from 1995 to 2003 and data pertaining to female breast cancer cases (<it>n </it>= 4,604) at ZIP code level in Midland, Saginaw, and Bay Counties for years 1985 through 2002. Descriptive statistics and self-organizing map algorithm were used to evaluate dioxin levels in soils. Geographic information systems techniques, the Kulldorff's spatial and space-time scan statistics, and genetic algorithms were used to explore the variation in the incidence of breast cancer in space and space-time. Odds ratio and their corresponding 95% confidence intervals, with adjustment for age, were used to investigate a spatial association between breast cancer incidence and soil dioxin contamination.</p> <p>Results</p> <p>High levels of dioxin in soils were observed in the city of Midland and the Tittabawassee River 100-year floodplain. After adjusting for age, we observed high breast cancer incidence rates and detected the presence of spatial clusters in the city of Midland, the confluence area of the Tittabawassee, and Saginaw Rivers. After accounting for spatiotemporal variations, we observed a spatial cluster of breast cancer incidence in Midland between 1985 and 1993. The odds ratio further suggests a statistically significant (<it>α </it>= 0.05) increased breast cancer rate as women get older, and a higher disease burden in Midland and the surrounding areas in close proximity to the dioxin contaminated areas.</p> <p>Conclusion</p> <p>These findings suggest that increased breast cancer incidences are spatially associated with soil dioxin contamination. Aging is a substantial factor in the development of breast cancer. Findings can be used for heightened surveillance and education, as well as formulating new study hypotheses for further research.</p
    corecore