6 research outputs found

    Hospitalization budget impact during the COVID-19 pandemic in Spain

    Get PDF
    To Mrs. Anne Murray for her support to translate the manuscript. This article is part of the doctoral thesis of Laura Álvarez as part of the Doctoral Program in Pharmacy, Granada University (Spain).Objectives: The aim was to determine the direct impact of the COVID-19 pandemic on Spain’s health budget. Methods: Budget impact analyses based on retrospective data from patients with suspected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) admitted to a Spanish hospital between February 26 and May 21, 2020. Direct medical costs from the perspective of the hospital were calculated. We analyzed diagnostic tests, drugs, medical and nursing care, and isolation ward and ICU stays for three cohorts: patients seen in the emergency room only, hospitalized patients who tested positive for SARS-CoV-2, and patients who tested negative. Results: The impact on the hospital’s budget for the 3 months was calculated at €15,633,180, 97.4% of which was related to health care and hospitalization. ICU stays accounted for 5.3% of the total costs. The mean cost per patient was €10,744. The main costs were staffing costs (10,131 to 11,357 €/patient for physicians and 10,274 to 11,215 €/patient for nurses). Scenario analysis showed that the range of hospital expenditure was between €14,693,256 and €16,524,924. The median impact of the pandemic on the Spanish health budget in the sensitivity analysis using bootstrapped individual data was €9357 million (interquartile range [IQR], 9071 to 9689) for the conservative scenario (113,588 hospital admissions and 11,664 ICU admissions) and €10,385 million (IQR, 110,030 to 10,758) for the worst-case scenario (including suspected cases). Conclusion: The impact of COVID-19 on the Spanish public health budget (12.3% of total public health expenditure) is greater than multiple sclerosis, cancer and diabetes cost

    The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission

    Get PDF
    86 pags., 49 figs., 24 tabs.NASA’s Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.This work has been funded by the Spanish Ministry of Economy and Competitiveness, through the projects No. ESP2014-54256-C4-1-R (also -2-R, -3-R and -4-R) and AYA2015-65041-P; Ministry of Science, Innovation and Universities, projects No. ESP2016-79612-C3-1-R (also -2-R and -3-R), ESP2016-80320-C2-1-R, RTI2018-098728-B-C31 (also -C32 and -C33) and RTI2018-099825-B-C31; Instituto Nacional de Técnica Aeroespacial; Ministry of Science and Innovation’s Centre for the Development of Industrial Technology; Grupos Gobierno Vasco IT1366-19; and European Research Council Consolidator Grant no 818602. The US co-authors performed their work under sponsorship from NASA’s Mars 2020 project, from the Game Changing Development program within the Space Technology Mission Directorate and from the Human Exploration and Operations Directorate

    The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission

    Get PDF
    86 pags, 49 figs, 24 tabsNASA's Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.This work has been funded by the Spanish Ministry of Economy and Competitiveness, through the projects No. ESP2014-54256-C4-1-R (also -2-R, -3-R and -4-R) and AYA2015-65041-P; Ministry of Science, Innovation and Universities, projects No. ESP2016-79612-C3-1-R (also -2-R and -3-R), ESP2016-80320-C2-1-R, RTI2018-098728-B-C31 (also -C32 and -C33) and RTI2018-099825-B-C31; Instituto Nacional de Tecnica Aeroespacial; Ministry of Science and Innovation's Centre for the Development of Industrial Technology; Grupos Gobierno Vasco IT1366-19; and European Research Council Consolidator Grant no 818602.Peer reviewe

    Abstracts of posters

    No full text

    Seven Millennia of Saltmaking. III Congreso Internacional de Antropologia de la Sal

    No full text
    International audienc
    corecore