220 research outputs found

    Optimum Arrangement of Resonator in Micro-bunch Free Electron Laser(III. Accelerator, Synchrotron Radiation, and Instrumentation)

    Get PDF
    Using a short-bunched beam of electrons from a linear accelator, the output of the micro-bunch FEL has been studied experimentally to clarify the optimum arrangement of an open resonator on the electron orbit. The output depends sharply on the arrangement, and the maximum output is observed when the resonator axis intersects the electron orbit with the angle of 3°

    Time-resolved spectroscopy of multi-excitonic decay in an InAs quantum dot

    Full text link
    The multi-excitonic decay process in a single InAs quantum dot is studied through high-resolution time-resolved spectroscopy. A cascaded emission sequence involving three spectral lines is seen that is described well over a wide range of pump powers by a simple model. The measured biexcitonic decay rate is about 1.5 times the single-exciton decay rate. This ratio suggests the presence of selection rules, as well as a significant effect of the Coulomb interaction on the biexcitonic wavefunction.Comment: one typo fixe

    The phase-separated states in antiferromagnetic semiconductors with polarizable lattice

    Full text link
    The possibility of the slab or stripe phase separation (alternating ferromagnetic highly- conductive and insulating antiferromagnetic layers) is proved for isotropic degenerate antiferromagnetic semiconductors. This type of phase separation competes with the droplet phase separation (ferromagnetic droplets in the antiferromagnetic host or vice versa). The interaction of electrons with optical phonons alone cannot cause phase-separated state with alternating highly-conductive and insulating regions but it stabilizes the magnetic phase separation. The magnetostriction deformation of the lattice in the phase-separated state is investigated.Comment: 17 Pages, 1 EPS Figur

    Millisecond-range electron spin memory in singly-charged InP quantum dots

    Full text link
    We report millisecond-range spin memory of resident electrons in an ensemble of InP quantum dots (QDs) under a small magnetic field of 0.1 T applied along the optical excitation axis at temperatures up to about 5 K. A pump-probe photoluminescence (PL) technique is used for optical orientation of electron spins by the pump pulses and for study of spin relaxation over the long time scale by measuring the degree of circular polarization of the probe PL as a function of pump-probe delay. Dependence of spin decay rate on magnetic field and temperature suggests two-phonon processes as the dominant spin relaxation mechanism in this QDs at low temperatures.Comment: 3 pages, 4 figures, submitted to Appl. Phys. Let

    First-principles calculations of the self-trapped exciton in crystalline NaCl

    Full text link
    The atomic and electronic structure of the lowest triplet state of the off-center (C2v symmetry) self-trapped exciton (STE) in crystalline NaCl is calculated using the local-spin-density (LSDA) approximation. In addition, the Franck-Condon broadening of the luminescence peak and the a1g -> b3u absorption peak are calculated and compared to experiment. LSDA accurately predicts transition energies if the initial and final states are both localized or delocalized, but 1 eV discrepancies with experiment occur if one state is localized and the other is delocalized.Comment: 4 pages with 4 embeddded figure

    Luminescence from highly excited nanorings: Luttinger liquid description

    Full text link
    We study theoretically the luminescence from quantum dots of a ring geometry. For high excitation intensities, photoexcited electrons and holes form Fermi seas. Close to the emission threshold, the single-particle spectral lines aquire weak many-body satellites. However, away from the threshold, the discrete luminescence spectrum is completely dominated by many-body transitions. We employ the Luttinger liquid approach to exactly calculate the intensities of all many-body spectral lines. We find that the transition from single-particle to many-body structure of the emission spectrum is governed by a single parameter and that the distribution of peaks away from the threshold is universal.Comment: 10 pages including 2 figure

    Ultrafast optical generation of coherent phonons in CdTe1-xSex quantum dots

    Full text link
    We report on the impulsive generation of coherent optical phonons in CdTe0.68Se0.32 nanocrystallites embedded in a glass matrix. Pump probe experiments using femtosecond laser pulses were performed by tuning the laser central energy to resonate with the absorption edge of the nanocrystals. We identify two longitudinal optical phonons, one longitudinal acoustic phonon and a fourth mode of a mixed longitudinal-transverse nature. The amplitude of the optical phonons as a function of the laser central energy exhibits a resonance that is well described by a model based on impulsive stimulated Raman scattering. The phases of the coherent phonons reveal coupling between different modes. At low power density excitations, the frequency of the optical coherent phonons deviates from values obtained from spontaneous Raman scattering. This behavior is ascribed to the presence of electronic impurity states which modify the nanocrystal dielectric function and, thereby, the frequency of the infrared-active phonons

    An adjuvant free mouse model of oral allergenic sensitization to rice seeds protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rice is commonly known as a staple crop consumed worldwide, though with several rice proteins being reported for allergic properties in clinical studies. Thus, there is a growing need for the development of an animal model to better understand the allergenicity of rice proteins and the immunological and pathophysiological mechanisms underlying the development of food allergy.</p> <p>Methods</p> <p>Groups of BALB/c mice were sensitized daily with freshly homogenized rice flour (30 mg or 80 mg) without adjuvant by intragastric gavage. In addition, the mice were challenged with extracted rice flour proteins at several time points intragastrically. Hypersensitivity symptoms in mice were evaluated according to a scoring system. Vascular leakage, ELISA of rice protein-specific IgE, histopathology of small intestine, and passive cutaneous anaphylaxis were conducted on challenged mice.</p> <p>Results</p> <p>An adjuvant free mouse model of rice allergy was established with sensitized mice showing increased scratching behaviors and increased vascular permeability. Rice protein-specific IgE was detected after eighteen days of sensitization and from the fifth challenge onwards. Inflammatory damage to the epithelium in the small intestine of mice was observed beyond one month of sensitization. Passive cutaneous anaphylaxis results confirmed the positive rice allergy in the mouse model.</p> <p>Conclusions</p> <p>We introduced a BALB/c mouse model of rice allergy with simple oral sensitization without the use of adjuvant. This model would serve as a useful tool for further analysis on the immunopathogenic mechanisms of the various rice allergens, for the evaluation of the hypersensitivity of rice or other cereal grains, and to serve as a platform for the development of immunotherapies against rice allergens.</p

    Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae

    Get PDF
    The benzylisoquinoline alkaloids (BIAs) are a diverse class of metabolites that exhibit a broad range of pharmacological activities and are synthesized through plant biosynthetic pathways comprised of complex enzyme activities and regulatory strategies. We have engineered yeast to produce the key intermediate reticuline and downstream BIA metabolites from a commercially available substrate. An enzyme tuning strategy was implemented that identified activity differences between variants from different plants and determined optimal expression levels. By synthesizing both stereoisomer forms of reticuline and integrating enzyme activities from three plant sources and humans, we demonstrated the synthesis of metabolites in the sanguinarine/berberine and morphinan branches. We also demonstrated that a human P450 enzyme exhibits a novel activity in the conversion of (R)-reticuline to the morphinan alkaloid salutaridine. Our engineered microbial hosts offer access to a rich group of BIA molecules and associated activities that will be further expanded through synthetic chemistry and biology approaches
    corecore