1,038 research outputs found
Design study for LANDSAT D attitude control system
A design and performance evaluation is presented for the LANDSAT D attitude control system (ACS). Control and configuration of the gimballed Ku-band antenna system for communication with the tracking and data relay satellite (TDRS). Control of the solar array drive considered part of the ACS is also addressed
Design study for LANDSAT-D attitude control system
The gimballed Ku-band antenna system for communication with TDRS was studied. By means of an error analysis it was demonstrated that the antenna cannot be open loop pointed to TDRS by an onboard programmer, but that an autotrack system was required. After some tradeoffs, a two-axis, azimuth-elevation type gimbal configuration was recommended for the antenna. It is shown that gimbal lock only occurs when LANDSAT-D is over water where a temporary loss of the communication link to TDRS is of no consequence. A preliminary gimbal control system design is also presented. A digital computer program was written that computes antenna gimbal angle profiles, assesses percent antenna beam interference with the solar array, and determines whether the spacecraft is over land or water, a lighted earth or a dark earth, and whether the spacecraft is in eclipse
Femto-Photography of Protons to Nuclei with Deeply Virtual Compton Scattering
Developments in deeply virtual Compton scattering allow the direct
measurements of scattering amplitudes for exchange of a highly virtual photon
with fine spatial resolution. Real-space images of the target can be obtained
from this information. Spatial resolution is determined by the momentum
transfer rather than the wavelength of the detected photon. Quantum photographs
of the proton, nuclei, and other elementary particles with resolution on the
scale of a fraction of a femtometer is feasible with existing experimental
technology.Comment: To be published in Physical Review D. Replaces previous version with
minor changes in presentatio
Quantized Orbits and Resonant Transport
A tight binding representation of the kicked Harper model is used to obtain
an integrable semiclassical Hamiltonian consisting of degenerate "quantized"
orbits. New orbits appear when renormalized Harper parameters cross integer
multiples of . Commensurability relations between the orbit frequencies
are shown to correlate with the emergence of accelerator modes in the classical
phase space of the original kicked problem. The signature of this resonant
transport is seen in both classical and quantum behavior. An important feature
of our analysis is the emergence of a natural scaling relating classical and
quantum couplings which is necessary for establishing correspondence.Comment: REVTEX document - 8 pages + 3 postscript figures. Submitted to
Phys.Rev.Let
On the Green's Function of the almost-Mathieu Operator
The square tight-binding model in a magnetic field leads to the
almost-Mathieu operator which, for rational fields, reduces to a
matrix depending on the components , of the wave vector in the
magnetic Brillouinzone. We calculate the corresponding Green's function without
explicit knowledge of eigenvalues and eigenfunctions and obtain analytical
expressions for the diagonal and the first off-diagonal elements; the results
which are consistent with the zero magnetic field case can be used to calculate
several quantities of physical interest (e. g. the density of states over the
entire spectrum, impurity levels in a magnetic field).Comment: 9 pages, 3 figures corrected some minor errors and typo
Hysteresis effect due to the exchange Coulomb interaction in short-period superlattices in tilted magnetic fields
We calculate the ground-state of a two-dimensional electron gas in a
short-period lateral potential in magnetic field, with the Coulomb
electron-electron interaction included in the Hartree-Fock approximation. For a
sufficiently short period the dominant Coulomb effects are determined by the
exchange interaction. We find numerical solutions of the self-consistent
equations that have hysteresis properties when the magnetic field is tilted and
increased, such that the perpendicular component is always constant. This
behavior is a result of the interplay of the exchange interaction with the
energy dispersion and the spin splitting. We suggest that hysteresis effects of
this type could be observable in magneto-transport and magnetization
experiments on quantum-wire and quantum-dot superlattices.Comment: 3 pages, 3 figures, Revtex, to appear in Phys. Rev.
Electronic Band Structure In A Periodic Magnetic Field
We analyze the energy band structure of a two-dimensional electron gas in a
periodic magnetic field of a longitudinal antiferromagnet by considering a
simple exactly solvable model. Two types of states appear: with a finite and
infinitesimal longitudinal mobility. Both types of states are present at a
generic Fermi surface. The system exhibits a transition to an insulating regime
with respect to the longitudinal current, if the electron density is
sufficiently low.Comment: 8 pages, 5 figures; to appear in Phys. Rev. B '9
Deuteron Electromagnetic Form Factors in the Intermediate Energy Region
Based on a Perturbative QCD analysis of the deuteron form factor, a model for
the reduced form factor is suggested. The numerical result is consistent with
the data in the intermediate energy region.Comment: 9 pages, to appear in Phys.Rev.
Effects of Electron Correlations on Hofstadter Spectrum
By allowing interactions between electrons, a new Harper's equation is
derived to examine the effects of electron correlations on the Hofstadter
energy spectra. It is shown that the structure of the Hofstadter butterfly ofr
the system of correlated electrons is modified only in the band gaps and the
band widths, but not in the characteristics of self-similarity and the Cantor
set.Comment: 13 pages, 5 Postscript figure
The Flux-Phase of the Half-Filled Band
The conjecture is verified that the optimum, energy minimizing magnetic flux
for a half-filled band of electrons hopping on a planar, bipartite graph is
per square plaquette. We require {\it only} that the graph has
periodicity in one direction and the result includes the hexagonal lattice
(with flux 0 per hexagon) as a special case. The theorem goes beyond previous
conjectures in several ways: (1) It does not assume, a-priori, that all
plaquettes have the same flux (as in Hofstadter's model); (2) A Hubbard type
on-site interaction of any sign, as well as certain longer range interactions,
can be included; (3) The conclusion holds for positive temperature as well as
the ground state; (4) The results hold in dimensions if there is
periodicity in directions (e.g., the cubic lattice has the lowest energy
if there is flux in each square face).Comment: 9 pages, EHL14/Aug/9
- …