26 research outputs found

    Weak Sequential Composition in Process Algebras

    Get PDF
    n this paper we study a special operator for sequential composition, which is defined relative to a dependency relation over the actions of a given system. The idea is that actions which are not dependent (intuitively because they share no common resources) do not have to wait for one another to proceed, even if they are composed sequentially. Such a notion has been studied before in a linear-time setting, but until recently there has been no systematic investigation in the context of process algebras. We give a structural operational semantics for a process algebraic language containing such a sequential composition operator, which shows some interesting interplay with choice. We give a complete axiomatisation of strong bisimilarity and we show consistency of the operational semantics with an event-based denotational semantics developed recently by the second author. The axiom system allows to derive the communication closed layers law, which in the linear time setting has been shown to be a very useful instrument in correctness preserving transformations. We conclude with a couple of examples

    Mice Lacking Adrenergic Signaling Have Normal Cochlear Responses and Normal Resistance to Acoustic Injury but Enhanced Susceptibility to Middle-Ear Infection

    No full text
    The vasculature and neurons of the inner ear receive adrenergic innervation from the cervical sympathetic chain, and adrenergic receptors may be expressed by cells of the organ of Corti and stria vascularis, despite a lack of direct sympathetic innervation. To assess the functional role of adrenergic signaling in the auditory periphery, we studied mice with targeted deletion of the gene for dopamine ÎČ-hydroxylase (DBH), which catalyzes the conversion of dopamine to noradrenaline; thus, these mutant mice have no measurable adrenaline or noradrenaline. Dbh−/− mice were more susceptible to spontaneous middle-ear infection than their control littermates, consistent with a role for sympathetics in systemic and/or local immune response. At 6–8 weeks of age, cochlear thresholds and suprathreshold responses assessed by auditory brainstem responses and distortion product otoacoustic emissions, as well as light-microscopic morphology, were indistinguishable from controls, if ears with conductive hearing loss were eliminated. Dbh−/− mice were no more susceptible to acoustic injury than controls, despite prior reports that sympathectomy reduces noise damage. Dbh−/− mice showed enhancement of shock-evoked olivocochlear suppression of cochlear responses, which may arise from the loss of adrenergic inputs to olivocochlear neurons in the brainstem. However, adrenergic modulation of olivocochlear efferents does not mediate the protective effect of contralateral cochlear destruction on ipsilateral response to acoustic overexposure
    corecore