21,525 research outputs found

    Can Plane Wave Modes be Physical Modes in Soliton Models?

    Get PDF
    I show that plane waves may not be used as asymptotic states in soliton models because they describe unphysical states. When asymptotic states are taken to be physical there is no T-matrix of \cO(1).Comment: Latex. Published in Phys. Lett.

    Asymmetric Evaluations of Erasure and Undetected Error Probabilities

    Full text link
    The problem of channel coding with the erasure option is revisited for discrete memoryless channels. The interplay between the code rate, the undetected and total error probabilities is characterized. Using the information spectrum method, a sequence of codes of increasing blocklengths nn is designed to illustrate this tradeoff. Furthermore, for additive discrete memoryless channels with uniform input distribution, we establish that our analysis is tight with respect to the ensemble average. This is done by analysing the ensemble performance in terms of a tradeoff between the code rate, the undetected and the total errors. This tradeoff is parametrized by the threshold in a generalized likelihood ratio test. Two asymptotic regimes are studied. First, the code rate tends to the capacity of the channel at a rate slower than n1/2n^{-1/2} corresponding to the moderate deviations regime. In this case, both error probabilities decay subexponentially and asymmetrically. The precise decay rates are characterized. Second, the code rate tends to capacity at a rate of n1/2n^{-1/2}. In this case, the total error probability is asymptotically a positive constant while the undetected error probability decays as exp(bn1/2)\exp(- b n^{ 1/2}) for some b>0b>0. The proof techniques involve applications of a modified (or "shifted") version of the G\"artner-Ellis theorem and the type class enumerator method to characterize the asymptotic behavior of a sequence of cumulant generating functions.Comment: 28 pages, no figures in IEEE Transactions on Information Theory, 201

    Minimum Rates of Approximate Sufficient Statistics

    Full text link
    Given a sufficient statistic for a parametric family of distributions, one can estimate the parameter without access to the data. However, the memory or code size for storing the sufficient statistic may nonetheless still be prohibitive. Indeed, for nn independent samples drawn from a kk-nomial distribution with d=k1d=k-1 degrees of freedom, the length of the code scales as dlogn+O(1)d\log n+O(1). In many applications, we may not have a useful notion of sufficient statistics (e.g., when the parametric family is not an exponential family) and we also may not need to reconstruct the generating distribution exactly. By adopting a Shannon-theoretic approach in which we allow a small error in estimating the generating distribution, we construct various {\em approximate sufficient statistics} and show that the code length can be reduced to d2logn+O(1)\frac{d}{2}\log n+O(1). We consider errors measured according to the relative entropy and variational distance criteria. For the code constructions, we leverage Rissanen's minimum description length principle, which yields a non-vanishing error measured according to the relative entropy. For the converse parts, we use Clarke and Barron's formula for the relative entropy of a parametrized distribution and the corresponding mixture distribution. However, this method only yields a weak converse for the variational distance. We develop new techniques to achieve vanishing errors and we also prove strong converses. The latter means that even if the code is allowed to have a non-vanishing error, its length must still be at least d2logn\frac{d}{2}\log n.Comment: To appear in the IEEE Transactions on Information Theor

    Collective Coordinates and the Absence of Yukawa Coupling in the Classical Skyrme Model

    Get PDF
    In systems with constraints, physical states must be annihilated by the constraints. We make use of this rule to construct physical asymptotic states in the Skyrme model. The standard derivation of the Born terms with asymptotic physical states shows that there is no Yukawa coupling for the Skyrmion. We propose a remedy tested in other solitonic models: A Wilsonian action obtained after integrating the energetic mesons and where the Skyrmion is a quantum state should have a Yukawa coupling.Comment: LATE

    Effective temperature in nonequilibrium steady states of Langevin systems with a tilted periodic potential

    Full text link
    We theoretically study Langevin systems with a tilted periodic potential. It has been known that the ratio Θ\Theta of the diffusion constant to the differential mobility is not equal to the temperature of the environment (multiplied by the Boltzmann constant), except in the linear response regime, where the fluctuation dissipation theorem holds. In order to elucidate the physical meaning of Θ\Theta far from equilibrium, we analyze a modulated system with a slowly varying potential. We derive a large scale description of the probability density for the modulated system by use of a perturbation method. The expressions we obtain show that Θ\Theta plays the role of the temperature in the large scale description of the system and that Θ\Theta can be determined directly in experiments, without measurements of the diffusion constant and the differential mobility

    Single-molecule stochastic resonance

    Full text link
    Stochastic resonance (SR) is a well known phenomenon in dynamical systems. It consists of the amplification and optimization of the response of a system assisted by stochastic noise. Here we carry out the first experimental study of SR in single DNA hairpins which exhibit cooperatively folding/unfolding transitions under the action of an applied oscillating mechanical force with optical tweezers. By varying the frequency of the force oscillation, we investigated the folding/unfolding kinetics of DNA hairpins in a periodically driven bistable free-energy potential. We measured several SR quantifiers under varied conditions of the experimental setup such as trap stiffness and length of the molecular handles used for single-molecule manipulation. We find that the signal-to-noise ratio (SNR) of the spectral density of measured fluctuations in molecular extension of the DNA hairpins is a good quantifier of the SR. The frequency dependence of the SNR exhibits a peak at a frequency value given by the resonance matching condition. Finally, we carried out experiments in short hairpins that show how SR might be useful to enhance the detection of conformational molecular transitions of low SNR.Comment: 11 pages, 7 figures, supplementary material (http://prx.aps.org/epaps/PRX/v2/i3/e031012/prx-supp.pdf

    Interplay of the Chiral and Large N_c Limits in pi N Scattering

    Get PDF
    Light-quark hadronic physics admits two useful systematic expansions, the chiral and 1/N_c expansions. Their respective limits do not commute, making such cases where both expansions may be considered to be especially interesting. We first study pi N scattering lengths, showing that (as expected for such soft-pion quantities) the chiral expansion converges more rapidly than the 1/N_c expansion, although the latter nevertheless continues to hold. We also study the Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules of pi N scattering, finding that both fail if the large N_c limit is taken prior to the chiral limit.Comment: 10 pages, ReVTe

    Forced Magnetoresistance in Ferromagnetic Alloys

    Get PDF
    corecore