60 research outputs found

    Decomposing numerical ranges along with spectral sets

    Full text link
    This note is to indicate the new sphere of applicability of the method developed by Mlak as well as by the author. Restoring those ideas is summoned by current developments concerning KK-spectral sets on numerical ranges

    Holomorphic Hermite polynomials in two variables

    Full text link
    Generalizations of the Hermite polynomials to many variables and/or to the complex domain have been located in mathematical and physical literature for some decades. Polynomials traditionally called complex Hermite ones are mostly understood as polynomials in zz and zˉ\bar{z} which in fact makes them polynomials in two real variables with complex coefficients. The present paper proposes to investigate for the first time holomorphic Hermite polynomials in two variables. Their algebraic and analytic properties are developed here. While the algebraic properties do not differ too much for those considered so far, their analytic features are based on a kind of non-rotational orthogonality invented by van Eijndhoven and Meyers. Inspired by their invention we merely follow the idea of Bargmann's seminal paper (1961) giving explicit construction of reproducing kernel Hilbert spaces based on those polynomials. "Homotopic" behavior of our new formation culminates in comparing it to the very classical Bargmann space of two variables on one edge and the aforementioned Hermite polynomials in zz and zˉ\bar{z} on the other. Unlike in the case of Bargmann's basis our Hermite polynomials are not product ones but factorize to it when bonded together with the first case of limit properties leading both to the Bargmann basis and suitable form of the reproducing kernel. Also in the second limit we recover standard results obeyed by Hermite polynomials in zz and zˉ\bar{z}

    On oscillatorlike Hamiltonians and squeezing

    Get PDF
    Generalizing a recent proposal leading to one-parameter families of Hamiltonians and to new sets of squeezed states, we construct larger classes of physically admissible Hamiltonians permitting new developments in squeezing. Coherence is also discussed.Comment: 15 pages, Late

    Squeezing: the ups and downs

    Full text link
    We present an operator theoretic side of the story of squeezed states regardless the order of squeezing. For low order, that is for displacement (order 1) and squeeze (order 2) operators, we bring back to consciousness what is know or rather what has to be known by making the exposition as exhaustive as possible. For the order 2 (squeeze) we propose an interesting model of the Segal-Bargmann type. For higher order the impossibility of squeezing in the traditional sense is proved rigorously. Nevertheless what we offer is the state-of-the-art concerning the topic.Comment: 21 pages; improved presentation; it has been published by Proceedings of the Royal Society

    Componentwise and Cartesian decompositions of linear relations

    Full text link
    Let AA be a, not necessarily closed, linear relation in a Hilbert space \sH with a multivalued part \mul A. An operator BB in \sH with \ran B\perp\mul A^{**} is said to be an operator part of AA when A=B \hplus (\{0\}\times \mul A), where the sum is componentwise (i.e. span of the graphs). This decomposition provides a counterpart and an extension for the notion of closability of (unbounded) operators to the setting of linear relations. Existence and uniqueness criteria for the existence of an operator part are established via the so-called canonical decomposition of AA. In addition, conditions are developed for the decomposition to be orthogonal (components defined in orthogonal subspaces of the underlying space). Such orthogonal decompositions are shown to be valid for several classes of relations. The relation AA is said to have a Cartesian decomposition if A=U+\I V, where UU and VV are symmetric relations and the sum is operatorwise. The connection between a Cartesian decomposition of AA and the real and imaginary parts of AA is investigated
    corecore