23 research outputs found

    Detection of Invasive Mosquito Vectors Using Environmental DNA (eDNA) from Water Samples.

    Get PDF
    Repeated introductions and spread of invasive mosquito species (IMS) have been recorded on a large scale these last decades worldwide. In this context, members of the mosquito genus Aedes can present serious risks to public health as they have or may develop vector competence for various viral diseases. While the Tiger mosquito (Aedes albopictus) is a well-known vector for e.g. dengue and chikungunya viruses, the Asian bush mosquito (Ae. j. japonicus) and Ae. koreicus have shown vector competence in the field and the laboratory for a number of viruses including dengue, West Nile fever and Japanese encephalitis. Early detection and identification is therefore crucial for successful eradication or control strategies. Traditional specific identification and monitoring of different and/or cryptic life stages of the invasive Aedes species based on morphological grounds may lead to misidentifications, and are problematic when extensive surveillance is needed. In this study, we developed, tested and applied an environmental DNA (eDNA) approach for the detection of three IMS, based on water samples collected in the field in several European countries. We compared real-time quantitative PCR (qPCR) assays specific for these three species and an eDNA metabarcoding approach with traditional sampling, and discussed the advantages and limitations of these methods. Detection probabilities for eDNA-based approaches were in most of the specific comparisons higher than for traditional survey and the results were congruent between both molecular methods, confirming the reliability and efficiency of alternative eDNA-based techniques for the early and unambiguous detection and surveillance of invasive mosquito vectors. The ease of water sampling procedures in the eDNA approach tested here allows the development of large-scale monitoring and surveillance programs of IMS, especially using citizen science projects

    A molecular analysis of the Afrotropical Baetidae

    Get PDF
    Recent work on the Afrotropical Baetidae has resulted in a number of important taxonomic changes: several polyphyletic genera have been split and more than 30 new Afrotropical genera have been established. In order to test their phylogenetic relevance and to clarify the suprageneric relationships, we reconstructed the first comprehensive molecular phylogeny of the Afrotropical Baetidae. We sequenced a total of ca. 2300 bp from nuclear (18S) and mitochondrial (12S and 16S) gene regions from 65 species belonging to 26 genera. We used three different approaches of phylogeny reconstruction: direct optimization, maximum parsimony and maximum likelihood. The molecular reconstruction indicates the Afrotropical Baetidae require a global revision at a generic as well as suprageneric level. Only four of the 12 genera were monophyletic when represented by more than one species in the analysis. Historically, two conflicting concepts of the suprageneric classification of Afrotropical Baetidae were proposed. One was based on the gathering of sister genera into complexes and the other on the division of the family into a restricted number of subfamilies. According to our reconstruction, neither is completely satisfactory: the major complexes of genera present in Africa are either paraphyletic or polyphyletic and the division of the Afrotropical Baetidae into two subfamilies is probably too simplified

    The effect of dietary antioxidant supplementation in a vertebrate host on the infection dynamics and transmission of avian malaria to the vector.

    Get PDF
    Host susceptibility to parasites is likely to be influenced by intrinsic factors, such as host oxidative status determined by the balance between pro-oxidant production and antioxidant defences. As a result, host oxidative status acts as an environmental factor for parasites and may constrain parasite development. We evaluated the role of host oxidative status on infection dynamics of an avian malarial parasite by providing canaries (Serinus canaria) with an antioxidant supplementation composed of vitamin E (a lipophilic antioxidant) and olive oil, a source of monounsaturated fatty acids. Another group received a standard, non-supplemented food. Half of the birds in each group where then infected with the haemosporidian parasite, Plasmodium relictum. We monitored the parasitaemia, haematocrit level, and red cell membrane resistance, as well as the transmission success of the parasite to its mosquito vector, Culex pipiens. During the acute phase, the negative effect of the infection was more severe in the supplemented group, as shown by a lower haematocrit level. Parasitaemia was lower in the supplemented group during the chronic phase only. Mosquitoes fed on supplemented hosts were more often infected than mosquitoes fed on the control group. These results suggest that dietary antioxidant supplementation conferred protection against Plasmodium in the long term, at the expense of a short-term negative effect. Malaria parasites may take advantage of antioxidants, as shown by the increased transmission rate in the supplemented group. Overall, our results suggest an important role of oxidative status in infection outcome and parasite transmission

    Temporal changes in mosquito abundance (Culex pipiens), avian malaria prevalence and lineage composition

    Get PDF
    Background: Knowledge on the temporal dynamics of host/vector/parasite interactions is a pre-requisite to further address relevant questions in the fields of epidemiology and evolutionary ecology of infectious diseases. In studies of avian malaria, the natural history of Plasmodium parasites with their natural mosquito vectors, however, is mostly unknown. Methods: Using artificial water containers placed in the field, we monitored the relative abundance of parous females of Culex pipiens mosquitoes during two years (2010-2011), in a population in western Switzerland. Additionally, we used molecular tools to examine changes in avian malaria prevalence and Plasmodium lineage composition in female C. pipiens caught throughout one field season (April-August) in 2011. Results: C. pipiens relative abundance varied both between years and months, and was associated with temperature fluctuations. Total Plasmodium prevalence was high and increased from spring to summer months (13.1-20.3%). The Plasmodium community was composed of seven different lineages including P. relictum (SGS1, GRW11 and PADOM02 lineages), P. vaughani (lineage SYAT05) and other Plasmodium spp. (AFTRU5, PADOM1, COLL1). The most prevalent lineages, P. vaughani (lineage SYAT05) and P. relictum (lineage SGS1), were consistently found between years, although they had antagonistic dominance patterns during the season survey. Conclusions: Our results suggest that the time window of analysis is critical in evaluating changes in the community of avian malaria lineages infecting mosquitoes. The potential determinants of the observed changes as well as their implications for future prospects on avian malaria are discussed

    Altitudinal variation in haemosporidian parasite distribution in great tit populations.

    Get PDF
    BACKGROUND: One of the major issues concerning disease ecology and conservation is knowledge of the factors that influence the distribution of parasites and consequently disease outbreaks. This study aimed to investigate avian haemosporidian composition and the distribution of these parasites in three altitudinally separated great tit (Parus major) populations in western Switzerland over a three-year period. The objectives were to determine the lineage diversity of parasites occuring across the study populations and to investigate whether altitudinal gradients govern the distribution of haemosporidian parasites by lineage. METHODS: In this study molecular approaches (PCR and sequencing) were used to detect avian blood parasites (Plasmodium sp., Haemoproteus sp. and Leucocytozoon sp.) in populations of adult great tits caught on their nests during three consecutive breeding seasons. RESULTS: High levels of parasite prevalence (88-96%) were found across all of the study populations with no significant altitude effect. Altitude did, however, govern the distribution of parasites belonging to different genera, with Plasmodium parasites being more prevalent at lower altitudes, Leucocytozoon parasites more at high altitude and Haemoproteus parasite prevalence increasing with altitude. A total of 27 haemosporidian parasite lineages were recorded across all study sites, with diversity showing a positive correlation to altitude. Parasites belonging to lineage SGS1 (P. relictum) and PARUS4 and PARUS19 (Leucocytozoon sp.) dominated lower altitudes. SW2 (P. polare) was the second most prevalent lineage of parasite detected overall and these parasites were responsible for 68% of infections at intermediate altitude, but were only documented at this one study site. CONCLUSIONS: Avian haemosporidian parasites are not homogeneously distributed across host populations, but differ by altitude. This difference is most probably brought about by environmental factors influencing vector prevalence and distribution. The high occurrence of co-infection by different genera of parasites might have pronounced effects on host fitness and should consequently be investigated more rigorously

    Natural malaria infection reduces starvation resistance of nutritionally stressed mosquitoes.

    No full text
    In disease ecology, there is growing evidence that environmental quality interacts with parasite and host to determine host susceptibility to an infection. Most studies of malaria parasites have focused on the infection costs incurred by the hosts, and few have investigated the costs on mosquito vectors. The interplay between the environment, the vector and the parasite has therefore mostly been ignored and often relied on unnatural or allopatric Plasmodium/vector associations. Here, we investigated the effects of natural avian malaria infection on both fecundity and survival of field-caught female Culex pipiens mosquitoes, individually maintained in laboratory conditions. We manipulated environmental quality by providing mosquitoes with different concentrations of glucose-feeding solution prior to submitting them to a starvation challenge. We used molecular-based methods to assess mosquitoes' infection status. We found that mosquitoes infected with Plasmodium had lower starvation resistance than uninfected ones only under low nutritional conditions. The effect of nutritional stress varied with time, with the difference of starvation resistance between optimally and suboptimally fed mosquitoes increasing from spring to summer, as shown by a significant interaction between diet treatment and months of capture. Infected and uninfected mosquitoes had similar clutch size, indicating no effect of infection on fecundity. Overall, this study suggests that avian malaria vectors may suffer Plasmodium infection costs in their natural habitat, under certain environmental conditions. This may have major implications for disease transmission in the wild

    Potential evidence of parasite avoidance in an avian malarial vector

    No full text
    Epidemiological studies of malaria or other vector-transmitted diseases often consider vectors as passive actors in the complex life cycle of the parasites, assuming that vector populations are homogeneous and vertebrate hosts are equally susceptible to being infected during their lifetime. However, some studies based on both human and rodent malaria systems found that mosquito vectors preferentially selected infected vertebrate hosts. This subject has been scarcely investigated in avian malaria models and even less in wild animals using natural host-parasite associations. We investigated whether the malaria infection status of wild great tits, Parus major, played a role in host selection by the mosquito vector Culex pipiens. Pairs of infected and uninfected birds were tested in a dual-choice olfactometer to assess their attractiveness to the mosquitoes. Plasmodium-infected birds attracted significantly fewer mosquitoes than the uninfected ones, which suggest that avian malaria parasites alter hosts' odours involved in vector orientation. Reaction time of the mosquitoes, that is, the time taken to select a host, and activation of mosquitoes, defined as the proportion of individuals flying towards one of the hosts, were not affected by the bird's infection status. The importance of these behavioural responses for the vector is discussed in light of recent advances in related or similar model systems

    Potential evidence of parasite avoidance in an avian malarial vector

    No full text
    Epidemiological studies of malaria or other vector-transmitted diseases often consider vectors as passive actors in the complex life cycle of the parasites, assuming that vector populations are homogeneous and vertebrate hosts are equally susceptible to being infected during their lifetime. However, some studies based on both human and rodent malaria systems found that mosquito vectors preferentially selected infected vertebrate hosts. This subject has been scarcely investigated in avian malaria models and even less in wild animals using natural host-parasite associations. We investigated whether the malaria infection status of wild great tits, Parus major, played a role in host selection by the mosquito vector Culex pipiens. Pairs of infected and uninfected birds were tested in a dual-choice olfactometer to assess their attractiveness to the mosquitoes. Plasmodium-infected birds attracted significantly fewer mosquitoes than the uninfected ones, which suggest that avian malaria parasites alter hosts' odours involved in vector orientation. Reaction time of the mosquitoes, that is, the time taken to select a host, and activation of mosquitoes, defined as the proportion of individuals flying towards one of the hosts, were not affected by the bird's infection status. The importance of these behavioural responses for the vector is discussed in light of recent advances in related or similar model systems
    corecore