8 research outputs found

    Synthesis and CO<sub>2</sub> Insertion Chemistry of Uranium(IV) Mixed-Sandwich Alkyl and Hydride Complexes

    No full text
    A series of UĀ­(IV) mixed-sandwich alkyls of the form [UĀ­(COT<sup>TIPS2</sup>)Ā­Cp*R] (R = Me, CH<sub>2</sub>Ph, CH<sub>2</sub>TMS, CHĀ­(TMS)<sub>2</sub>; COT<sup>TIPS2</sup> = C<sub>8</sub>H<sub>6</sub>(Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4)<sub>2</sub>; Cp* = C<sub>5</sub>Me<sub>5</sub>; TMS = SiMe<sub>3</sub>) have been synthesized and structurally characterized, and their reactivity toward H<sub>2</sub> and CO<sub>2</sub> has been investigated. The alkyls R = Me, CH<sub>2</sub>Ph, CH<sub>2</sub>TMS react at room temperature with a stoichiometric amount of CO<sub>2</sub> to form Īŗ<sup>2</sup>-carboxylate complexes. Reaction of all four alkyls with H<sub>2</sub> yields a monomeric, terminal hydride complex, [UĀ­(COT<sup>TIPS2</sup>)Ā­Cp*H], which is unstable with respect to hydrogen loss and reacts with CO<sub>2</sub> to give the Īŗ<sup>2</sup>-formate complex [UĀ­(COT<sup>TIPS2</sup>)Ā­Cp*Ā­(Īŗ<sup>2</sup>-O<sub>2</sub>CH)]. Additionally, a common decomposition product of the alkyls and hydride complexī—øactivation of a Cp* methyl group to give a ā€œtucked-inā€ alkylī—øhas been isolated and structurally characterized and its insertion chemistry toward CO<sub>2</sub> has been examined

    The Reductive Activation of CO<sub>2</sub> Across a Tiī—»Ti Double Bond: Synthetic, Structural, and Mechanistic Studies

    No full text
    The reactivity of the bisĀ­(pentalene)Ā­dititanium double-sandwich compound Ti<sub>2</sub>Pn<sup>ā€ </sup><sub>2</sub> (<b>1</b>) (Pn<sup>ā€ </sup> = 1,4-{Si<sup>i</sup>Pr<sub>3</sub>}<sub>2</sub>C<sub>8</sub>H<sub>4</sub>) with CO<sub>2</sub> is investigated in detail using spectroscopic, X-ray crystallographic, and computational studies. When the CO<sub>2</sub> reaction is performed at āˆ’78 Ā°C, the 1:1 adduct <b>4</b> is formed, and low-temperature spectroscopic measurements are consistent with a CO<sub>2</sub> molecule bound symmetrically to the two Ti centers in a Ī¼:Ī·<sup>2</sup>,Ī·<sup>2</sup> binding mode, a structure also indicated by theory. Upon warming to room temperature the coordinated CO<sub>2</sub> is quantitatively reduced over a period of minutes to give the bisĀ­(oxo)-bridged dimer <b>2</b> and the dicarbonyl complex <b>3</b>. In situ NMR studies indicated that this decomposition proceeds in a stepwise process via monooxo (<b>5</b>) and monocarbonyl (<b>7</b>) double-sandwich complexes, which have been independently synthesized and structurally characterized. <b>5</b> is thermally unstable with respect to a Ī¼-O dimer in which the Tiā€“Ti bond has been cleaved and one pentalene ligand binds in an Ī·<sup>8</sup> fashion to each of the formally Ti<sup>III</sup> centers. The molecular structure of <b>7</b> shows a ā€œside-onā€ bound carbonyl ligand. Bonding of the double-sandwich species Ti<sub>2</sub>Pn<sub>2</sub> (Pn = C<sub>8</sub>H<sub>6</sub>) to other fragments has been investigated by density functional theory calculations and fragment analysis, providing insight into the CO<sub>2</sub> reaction pathway consistent with the experimentally observed intermediates. A key step in the proposed mechanism is disproportionation of a monoĀ­(oxo) di-Ti<sup>III</sup> species to yield di-Ti<sup>II</sup> and di-Ti<sup>IV</sup> products. <b>1</b> forms a structurally characterized, thermally stable CS<sub>2</sub> adduct <b>8</b> that shows symmetrical binding to the Ti<sub>2</sub> unit and supports the formulation of <b>4</b>. The reaction of <b>1</b> with COS forms a thermally unstable complex <b>9</b> that undergoes scission to give monoĀ­(Ī¼-S) monoĀ­(CO) species <b>10</b>. Ph<sub>3</sub>PS is an effective sulfur transfer agent for <b>1</b>, enabling the synthesis of monoĀ­(Ī¼-S) complex <b>11</b> with a double-sandwich structure and bisĀ­(Ī¼-S) dimer <b>12</b> in which the Tiā€“Ti bond has been cleaved

    Synthesis and CO<sub>2</sub> Insertion Chemistry of Uranium(IV) Mixed-Sandwich Alkyl and Hydride Complexes

    No full text
    A series of UĀ­(IV) mixed-sandwich alkyls of the form [UĀ­(COT<sup>TIPS2</sup>)Ā­Cp*R] (R = Me, CH<sub>2</sub>Ph, CH<sub>2</sub>TMS, CHĀ­(TMS)<sub>2</sub>; COT<sup>TIPS2</sup> = C<sub>8</sub>H<sub>6</sub>(Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4)<sub>2</sub>; Cp* = C<sub>5</sub>Me<sub>5</sub>; TMS = SiMe<sub>3</sub>) have been synthesized and structurally characterized, and their reactivity toward H<sub>2</sub> and CO<sub>2</sub> has been investigated. The alkyls R = Me, CH<sub>2</sub>Ph, CH<sub>2</sub>TMS react at room temperature with a stoichiometric amount of CO<sub>2</sub> to form Īŗ<sup>2</sup>-carboxylate complexes. Reaction of all four alkyls with H<sub>2</sub> yields a monomeric, terminal hydride complex, [UĀ­(COT<sup>TIPS2</sup>)Ā­Cp*H], which is unstable with respect to hydrogen loss and reacts with CO<sub>2</sub> to give the Īŗ<sup>2</sup>-formate complex [UĀ­(COT<sup>TIPS2</sup>)Ā­Cp*Ā­(Īŗ<sup>2</sup>-O<sub>2</sub>CH)]. Additionally, a common decomposition product of the alkyls and hydride complexī—øactivation of a Cp* methyl group to give a ā€œtucked-inā€ alkylī—øhas been isolated and structurally characterized and its insertion chemistry toward CO<sub>2</sub> has been examined

    Bonding in Complexes of Bis(pentalene)dititanium, Ti<sub>2</sub>(C<sub>8</sub>H<sub>6</sub>)<sub>2</sub>

    No full text
    Bonding in the bisĀ­(pentalene)Ā­dititanium ā€œdouble-sandwichā€ species Ti<sub>2</sub>Pn<sub>2</sub> (Pn = C<sub>8</sub>H<sub>6</sub>) and its interaction with other fragments have been investigated by density functional calculations and fragment analysis. Ti<sub>2</sub>Pn<sub>2</sub> with <i>C</i><sub>2<i>v</i></sub> symmetry has two metalā€“metal bonds and a low-lying metal-based empty orbital, all three frontier orbitals having a<sub>1</sub> symmetry. The latter may be regarded as being derived by symmetric combinations of the classic three frontier orbitals of two bent bisĀ­(cyclopentadienyl) metal fragments. Electrochemical studies on Ti<sub>2</sub>Pn<sup>ā€ </sup><sub>2</sub> (Pn<sup>ā€ </sup> = 1,4-{Si<sup>i</sup>Pr<sub>3</sub>}<sub>2</sub>C<sub>8</sub>H<sub>4</sub>) revealed a one-electron oxidation, and the formally mixed-valence TiĀ­(II)ā€“TiĀ­(III) cationic complex [Ti<sub>2</sub>Pn<sup>ā€ </sup><sub>2</sub>]Ā­[BĀ­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] has been structurally characterized. Theory indicates an <i>S</i> = <sup>1</sup>/<sub>2</sub> ground-state electronic configuration for the latter, which was confirmed by EPR spectroscopy and SQUID magnetometry. Carbon dioxide binds symmetrically to Ti<sub>2</sub>Pn<sub>2</sub>, preserving the <i>C</i><sub>2<i>v</i></sub> symmetry, as does carbon disulfide. The dominant interaction in Ti<sub>2</sub>Pn<sub>2</sub>CO<sub>2</sub> is Ļƒ donation into the LUMO of bent CO<sub>2</sub>, and donation from the O atoms to Ti<sub>2</sub>Pn<sub>2</sub> is minimal, whereas in Ti<sub>2</sub>Pn<sub>2</sub>CS<sub>2</sub> there is significant interaction with the S atoms. The bridging O atom in the monoĀ­(oxo) species Ti<sub>2</sub>Pn<sub>2</sub>O, however, employs all three O 2p orbitals in binding and competes strongly with Pn, leading to weaker binding of the carbocyclic ligand, and the sulfur analogue Ti<sub>2</sub>Pn<sub>2</sub>S behaves similarly. Ti<sub>2</sub>Pn<sub>2</sub> is also capable of binding one, two, or three molecules of carbon monoxide. The bonding demands of a single CO molecule are incompatible with symmetric binding, and an asymmetric structure is found. The dicarbonyl adduct Ti<sub>2</sub>Pn<sub>2</sub>(CO)<sub>2</sub> has <i>C<sub>s</sub></i> symmetry with the Ti<sub>2</sub>Pn<sub>2</sub> unit acting as two MCp<sub>2</sub> fragments. Synthetic studies showed that in the presence of excess CO the tricarbonyl complex Ti<sub>2</sub>Pn<sup>ā€ </sup><sub>2</sub>(CO)<sub>3</sub> is formed, which optimizes to an asymmetric structure with one semibridging and two terminal CO ligands. Low-temperature <sup>13</sup>C NMR spectroscopy revealed a rapid dynamic exchange between the two bound CO sites and free CO

    Steric Effects in the Reductive Coupling of CO by Mixed-Sandwich Uranium(III) Complexes

    No full text
    The selectivity of the mixed-sandwich UĀ­(III) complexes of the type [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>R<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Rā€²</sup>)] (R = Me, <sup>i</sup>Pr; Rā€² = Me<sub>4</sub>H, Me<sub>5</sub>, Me<sub>4</sub><sup>i</sup>Pr, Me<sub>4</sub>SiMe<sub>3</sub>, Me<sub>4</sub>Et) toward the reductive coupling of CO to form uranium-bound oxocarbons has been explored. In this context, the new UĀ­(III) mixed-sandwich complexes [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Me4TMS</sup>)], [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Me4iPr</sup>)], [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Me4Et</sup>)], [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{SiMe<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp*)], and [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{SiMe<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Me4TMS</sup>)] have been prepared and structurally characterized. The reactivity toward CO is dominated by the ā€œglobalā€ sterics around the uranium center, while selectivity for oxocarbon formation is largely regulated by the steric bulk of the Cp<sup>Rā€²</sup> ligand. Accordingly, with excess CO [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Me4TMS</sup>)] and [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Me4iPr</sup>)] show no reactivity, [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{SiMe<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Me4TMS</sup>)] is completely selective for the formation of the ynediolate complex [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{SiMe<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Me4TMS</sup>)]<sub>2</sub>(Ī¼-Ī·<sup>1</sup>:Ī·<sup>1</sup>-<sup>13</sup>C<sub>2</sub>O<sub>2</sub>), [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<i>i</i>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp*)] affords only the deltate complex [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<i>i</i>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp*)]<sub>2</sub>(Ī¼-Ī·<sup>2</sup>:Ī·<sup>2</sup>-C<sub>3</sub>O<sub>3</sub>), and [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<i>i</i>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Me4H</sup>)] gives solely the squarate complex [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<i>i</i>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Me4H</sup>)]<sub>2</sub>(Ī¼-Ī·<sup>2</sup>:Ī·<sup>2</sup>-C<sub>4</sub>O<sub>4</sub>). Additionally, the squarate moiety has been removed from the uranium center in the last complex by reaction with Me<sub>3</sub>SiCl to afford the TMS ester of squaric acid, C<sub>4</sub>O<sub>2</sub>(OTMS)<sub>2</sub>

    Steric Effects in the Reductive Coupling of CO by Mixed-Sandwich Uranium(III) Complexes

    No full text
    The selectivity of the mixed-sandwich UĀ­(III) complexes of the type [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>R<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Rā€²</sup>)] (R = Me, <sup>i</sup>Pr; Rā€² = Me<sub>4</sub>H, Me<sub>5</sub>, Me<sub>4</sub><sup>i</sup>Pr, Me<sub>4</sub>SiMe<sub>3</sub>, Me<sub>4</sub>Et) toward the reductive coupling of CO to form uranium-bound oxocarbons has been explored. In this context, the new UĀ­(III) mixed-sandwich complexes [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Me4TMS</sup>)], [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Me4iPr</sup>)], [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Me4Et</sup>)], [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{SiMe<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp*)], and [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{SiMe<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Me4TMS</sup>)] have been prepared and structurally characterized. The reactivity toward CO is dominated by the ā€œglobalā€ sterics around the uranium center, while selectivity for oxocarbon formation is largely regulated by the steric bulk of the Cp<sup>Rā€²</sup> ligand. Accordingly, with excess CO [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Me4TMS</sup>)] and [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Me4iPr</sup>)] show no reactivity, [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{SiMe<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Me4TMS</sup>)] is completely selective for the formation of the ynediolate complex [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{SiMe<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Me4TMS</sup>)]<sub>2</sub>(Ī¼-Ī·<sup>1</sup>:Ī·<sup>1</sup>-<sup>13</sup>C<sub>2</sub>O<sub>2</sub>), [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<i>i</i>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp*)] affords only the deltate complex [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<i>i</i>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp*)]<sub>2</sub>(Ī¼-Ī·<sup>2</sup>:Ī·<sup>2</sup>-C<sub>3</sub>O<sub>3</sub>), and [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<i>i</i>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Me4H</sup>)] gives solely the squarate complex [UĀ­(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<i>i</i>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā­(Ī·-Cp<sup>Me4H</sup>)]<sub>2</sub>(Ī¼-Ī·<sup>2</sup>:Ī·<sup>2</sup>-C<sub>4</sub>O<sub>4</sub>). Additionally, the squarate moiety has been removed from the uranium center in the last complex by reaction with Me<sub>3</sub>SiCl to afford the TMS ester of squaric acid, C<sub>4</sub>O<sub>2</sub>(OTMS)<sub>2</sub>

    Comparison of the Reactivity of the Low Buried-Volume Carbene Complexes (ITMe)<sub>2</sub>Pd(PhCī—¼CPh) and (ITMe)<sub>2</sub>Pd(PhNī—»NPh)

    No full text
    The novel Pd(0)-azobenzene complex (ITMe)<sub>2</sub>PdĀ­(PhNī—»NPh) (<b>5</b>) (ITMe = 1,3,4,5-tetramethylimidazol-2-ylidene) has been isolated and characterized in the solid state and by cyclic voltammetry. Its reactivity toward Eā€“Eā€² bonds (E, Eā€² = Si, B, Ge) has been compared with that of the known carbene complex (ITMe)<sub>2</sub>PdĀ­(PhCī—¼CPh) (<b>2</b>). Whereas <b>2</b> reacts with all Eā€“Eā€² bonds studied, <b>5</b> only reacted with Bā€“B and Bā€“Si moieties, echoing our previous catalytic studies on azobenzenes

    Double-Sandwich Pentalene Complexes M<sub>2</sub>(pent<sup>ā€ </sup>)<sub>2</sub> (M = Rh, Pd; pent<sup>ā€ </sup> = 1,4-Bis(triisopropylsilyl)pentalene): Synthesis, Structure, and Bonding

    No full text
    The bisĀ­(pentalene) complexes M<sub>2</sub>(pent<sup>ā€ </sup>)<sub>2</sub> (M = Rh (<b>1</b>), Pd (<b>2</b>); pent<sup>ā€ </sup> = 1,4-bisĀ­(triisopropylsilyl)Ā­pentalene) have been synthesized and structurally characterized. In both <b>1</b> and <b>2</b> the metals have a formal electron count in excess of 18 per metal center, and DFT calculations indicate antibonding metalā€“metal interactions are present in <b>1</b>, whereas <b>2</b> involves antibonding metalā€“ligand interactions
    corecore