8 research outputs found
Synthesis and CO<sub>2</sub> Insertion Chemistry of Uranium(IV) Mixed-Sandwich Alkyl and Hydride Complexes
A series
of UĀ(IV) mixed-sandwich alkyls of the form [UĀ(COT<sup>TIPS2</sup>)ĀCp*R]
(R = Me, CH<sub>2</sub>Ph, CH<sub>2</sub>TMS, CHĀ(TMS)<sub>2</sub>;
COT<sup>TIPS2</sup> = C<sub>8</sub>H<sub>6</sub>(Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4)<sub>2</sub>; Cp* = C<sub>5</sub>Me<sub>5</sub>; TMS = SiMe<sub>3</sub>) have been synthesized
and structurally characterized, and their reactivity toward H<sub>2</sub> and CO<sub>2</sub> has been investigated. The alkyls R =
Me, CH<sub>2</sub>Ph, CH<sub>2</sub>TMS react at room temperature
with a stoichiometric amount of CO<sub>2</sub> to form Īŗ<sup>2</sup>-carboxylate complexes. Reaction of all four alkyls with H<sub>2</sub> yields a monomeric, terminal hydride complex, [UĀ(COT<sup>TIPS2</sup>)ĀCp*H], which is unstable with respect to hydrogen loss
and reacts with CO<sub>2</sub> to give the Īŗ<sup>2</sup>-formate
complex [UĀ(COT<sup>TIPS2</sup>)ĀCp*Ā(Īŗ<sup>2</sup>-O<sub>2</sub>CH)]. Additionally, a common decomposition product of the alkyls
and hydride complexīøactivation of a Cp* methyl group to give
a ātucked-inā alkylīøhas been isolated and structurally
characterized and its insertion chemistry toward CO<sub>2</sub> has
been examined
The Reductive Activation of CO<sub>2</sub> Across a Tiī»Ti Double Bond: Synthetic, Structural, and Mechanistic Studies
The reactivity of
the bisĀ(pentalene)Ādititanium double-sandwich
compound Ti<sub>2</sub>Pn<sup>ā </sup><sub>2</sub> (<b>1</b>) (Pn<sup>ā </sup> = 1,4-{Si<sup>i</sup>Pr<sub>3</sub>}<sub>2</sub>C<sub>8</sub>H<sub>4</sub>) with CO<sub>2</sub> is investigated
in detail using spectroscopic, X-ray crystallographic, and computational
studies. When the CO<sub>2</sub> reaction is performed at ā78
Ā°C, the 1:1 adduct <b>4</b> is formed, and low-temperature
spectroscopic measurements are consistent with a CO<sub>2</sub> molecule
bound symmetrically to the two Ti centers in a Ī¼:Ī·<sup>2</sup>,Ī·<sup>2</sup> binding mode, a structure also indicated
by theory. Upon warming to room temperature the coordinated CO<sub>2</sub> is quantitatively reduced over a period of minutes to give
the bisĀ(oxo)-bridged dimer <b>2</b> and the dicarbonyl complex <b>3</b>. In situ NMR studies indicated that this decomposition proceeds
in a stepwise process via monooxo (<b>5</b>) and monocarbonyl
(<b>7</b>) double-sandwich complexes, which have been independently
synthesized and structurally characterized. <b>5</b> is thermally
unstable with respect to a Ī¼-O dimer in which the TiāTi
bond has been cleaved and one pentalene ligand binds in an Ī·<sup>8</sup> fashion to each of the formally Ti<sup>III</sup> centers.
The molecular structure of <b>7</b> shows a āside-onā
bound carbonyl ligand. Bonding of the double-sandwich species Ti<sub>2</sub>Pn<sub>2</sub> (Pn = C<sub>8</sub>H<sub>6</sub>) to other
fragments has been investigated by density functional theory calculations
and fragment analysis, providing insight into the CO<sub>2</sub> reaction
pathway consistent with the experimentally observed intermediates.
A key step in the proposed mechanism is disproportionation of a monoĀ(oxo)
di-Ti<sup>III</sup> species to yield di-Ti<sup>II</sup> and di-Ti<sup>IV</sup> products. <b>1</b> forms a structurally characterized,
thermally stable CS<sub>2</sub> adduct <b>8</b> that shows symmetrical
binding to the Ti<sub>2</sub> unit and supports the formulation of <b>4</b>. The reaction of <b>1</b> with COS forms a thermally
unstable complex <b>9</b> that undergoes scission to give monoĀ(Ī¼-S)
monoĀ(CO) species <b>10</b>. Ph<sub>3</sub>PS is an effective
sulfur transfer agent for <b>1</b>, enabling the synthesis of
monoĀ(Ī¼-S) complex <b>11</b> with a double-sandwich structure
and bisĀ(Ī¼-S) dimer <b>12</b> in which the TiāTi
bond has been cleaved
Synthesis and CO<sub>2</sub> Insertion Chemistry of Uranium(IV) Mixed-Sandwich Alkyl and Hydride Complexes
A series
of UĀ(IV) mixed-sandwich alkyls of the form [UĀ(COT<sup>TIPS2</sup>)ĀCp*R]
(R = Me, CH<sub>2</sub>Ph, CH<sub>2</sub>TMS, CHĀ(TMS)<sub>2</sub>;
COT<sup>TIPS2</sup> = C<sub>8</sub>H<sub>6</sub>(Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4)<sub>2</sub>; Cp* = C<sub>5</sub>Me<sub>5</sub>; TMS = SiMe<sub>3</sub>) have been synthesized
and structurally characterized, and their reactivity toward H<sub>2</sub> and CO<sub>2</sub> has been investigated. The alkyls R =
Me, CH<sub>2</sub>Ph, CH<sub>2</sub>TMS react at room temperature
with a stoichiometric amount of CO<sub>2</sub> to form Īŗ<sup>2</sup>-carboxylate complexes. Reaction of all four alkyls with H<sub>2</sub> yields a monomeric, terminal hydride complex, [UĀ(COT<sup>TIPS2</sup>)ĀCp*H], which is unstable with respect to hydrogen loss
and reacts with CO<sub>2</sub> to give the Īŗ<sup>2</sup>-formate
complex [UĀ(COT<sup>TIPS2</sup>)ĀCp*Ā(Īŗ<sup>2</sup>-O<sub>2</sub>CH)]. Additionally, a common decomposition product of the alkyls
and hydride complexīøactivation of a Cp* methyl group to give
a ātucked-inā alkylīøhas been isolated and structurally
characterized and its insertion chemistry toward CO<sub>2</sub> has
been examined
Bonding in Complexes of Bis(pentalene)dititanium, Ti<sub>2</sub>(C<sub>8</sub>H<sub>6</sub>)<sub>2</sub>
Bonding in the bisĀ(pentalene)Ādititanium
ādouble-sandwichā
species Ti<sub>2</sub>Pn<sub>2</sub> (Pn = C<sub>8</sub>H<sub>6</sub>) and its interaction with other fragments have been investigated
by density functional calculations and fragment analysis. Ti<sub>2</sub>Pn<sub>2</sub> with <i>C</i><sub>2<i>v</i></sub> symmetry has two metalāmetal bonds and a low-lying metal-based
empty orbital, all three frontier orbitals having a<sub>1</sub> symmetry.
The latter may be regarded as being derived by symmetric combinations
of the classic three frontier orbitals of two bent bisĀ(cyclopentadienyl)
metal fragments. Electrochemical studies on Ti<sub>2</sub>Pn<sup>ā </sup><sub>2</sub> (Pn<sup>ā </sup> = 1,4-{Si<sup>i</sup>Pr<sub>3</sub>}<sub>2</sub>C<sub>8</sub>H<sub>4</sub>) revealed a one-electron
oxidation, and the formally mixed-valence TiĀ(II)āTiĀ(III) cationic
complex [Ti<sub>2</sub>Pn<sup>ā </sup><sub>2</sub>]Ā[BĀ(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] has been structurally characterized.
Theory indicates an <i>S</i> = <sup>1</sup>/<sub>2</sub> ground-state electronic configuration for the latter, which was
confirmed by EPR spectroscopy and SQUID magnetometry. Carbon dioxide
binds symmetrically to Ti<sub>2</sub>Pn<sub>2</sub>, preserving the <i>C</i><sub>2<i>v</i></sub> symmetry, as does carbon
disulfide. The dominant interaction in Ti<sub>2</sub>Pn<sub>2</sub>CO<sub>2</sub> is Ļ donation into the LUMO of bent CO<sub>2</sub>, and donation from the O atoms to Ti<sub>2</sub>Pn<sub>2</sub> is
minimal, whereas in Ti<sub>2</sub>Pn<sub>2</sub>CS<sub>2</sub> there
is significant interaction with the S atoms. The bridging O atom in
the monoĀ(oxo) species Ti<sub>2</sub>Pn<sub>2</sub>O, however, employs
all three O 2p orbitals in binding and competes strongly with Pn,
leading to weaker binding of the carbocyclic ligand, and the sulfur
analogue Ti<sub>2</sub>Pn<sub>2</sub>S behaves similarly. Ti<sub>2</sub>Pn<sub>2</sub> is also capable of binding one, two, or three molecules
of carbon monoxide. The bonding demands of a single CO molecule are
incompatible with symmetric binding, and an asymmetric structure is
found. The dicarbonyl adduct Ti<sub>2</sub>Pn<sub>2</sub>(CO)<sub>2</sub> has <i>C<sub>s</sub></i> symmetry with the Ti<sub>2</sub>Pn<sub>2</sub> unit acting as two MCp<sub>2</sub> fragments.
Synthetic studies showed that in the presence of excess CO the tricarbonyl
complex Ti<sub>2</sub>Pn<sup>ā </sup><sub>2</sub>(CO)<sub>3</sub> is formed, which optimizes to an asymmetric structure with one semibridging
and two terminal CO ligands. Low-temperature <sup>13</sup>C NMR spectroscopy
revealed a rapid dynamic exchange between the two bound CO sites and
free CO
Steric Effects in the Reductive Coupling of CO by Mixed-Sandwich Uranium(III) Complexes
The selectivity of the mixed-sandwich UĀ(III) complexes
of the type
[UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>R<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Rā²</sup>)]
(R = Me, <sup>i</sup>Pr; Rā² = Me<sub>4</sub>H, Me<sub>5</sub>, Me<sub>4</sub><sup>i</sup>Pr, Me<sub>4</sub>SiMe<sub>3</sub>, Me<sub>4</sub>Et) toward the reductive coupling of CO to form uranium-bound
oxocarbons has been explored. In this context, the new UĀ(III) mixed-sandwich
complexes [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Me4TMS</sup>)], [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Me4iPr</sup>)], [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Me4Et</sup>)], [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{SiMe<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp*)], and [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{SiMe<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Me4TMS</sup>)]
have been prepared and structurally characterized. The reactivity
toward CO is dominated by the āglobalā sterics around
the uranium center, while selectivity for oxocarbon formation is largely
regulated by the steric bulk of the Cp<sup>Rā²</sup> ligand.
Accordingly, with excess CO [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Me4TMS</sup>)] and [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Me4iPr</sup>)] show no reactivity, [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{SiMe<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Me4TMS</sup>)] is completely
selective for the formation of the ynediolate complex [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{SiMe<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Me4TMS</sup>)]<sub>2</sub>(Ī¼-Ī·<sup>1</sup>:Ī·<sup>1</sup>-<sup>13</sup>C<sub>2</sub>O<sub>2</sub>), [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<i>i</i>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp*)] affords only the deltate complex [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<i>i</i>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp*)]<sub>2</sub>(Ī¼-Ī·<sup>2</sup>:Ī·<sup>2</sup>-C<sub>3</sub>O<sub>3</sub>), and [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<i>i</i>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Me4H</sup>)] gives solely the squarate complex [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<i>i</i>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Me4H</sup>)]<sub>2</sub>(Ī¼-Ī·<sup>2</sup>:Ī·<sup>2</sup>-C<sub>4</sub>O<sub>4</sub>). Additionally,
the squarate moiety has been removed from the uranium center in the
last complex by reaction with Me<sub>3</sub>SiCl to afford the TMS
ester of squaric acid, C<sub>4</sub>O<sub>2</sub>(OTMS)<sub>2</sub>
Steric Effects in the Reductive Coupling of CO by Mixed-Sandwich Uranium(III) Complexes
The selectivity of the mixed-sandwich UĀ(III) complexes
of the type
[UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>R<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Rā²</sup>)]
(R = Me, <sup>i</sup>Pr; Rā² = Me<sub>4</sub>H, Me<sub>5</sub>, Me<sub>4</sub><sup>i</sup>Pr, Me<sub>4</sub>SiMe<sub>3</sub>, Me<sub>4</sub>Et) toward the reductive coupling of CO to form uranium-bound
oxocarbons has been explored. In this context, the new UĀ(III) mixed-sandwich
complexes [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Me4TMS</sup>)], [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Me4iPr</sup>)], [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Me4Et</sup>)], [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{SiMe<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp*)], and [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{SiMe<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Me4TMS</sup>)]
have been prepared and structurally characterized. The reactivity
toward CO is dominated by the āglobalā sterics around
the uranium center, while selectivity for oxocarbon formation is largely
regulated by the steric bulk of the Cp<sup>Rā²</sup> ligand.
Accordingly, with excess CO [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Me4TMS</sup>)] and [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<sup><i>i</i></sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Me4iPr</sup>)] show no reactivity, [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{SiMe<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Me4TMS</sup>)] is completely
selective for the formation of the ynediolate complex [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{SiMe<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Me4TMS</sup>)]<sub>2</sub>(Ī¼-Ī·<sup>1</sup>:Ī·<sup>1</sup>-<sup>13</sup>C<sub>2</sub>O<sub>2</sub>), [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<i>i</i>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp*)] affords only the deltate complex [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<i>i</i>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp*)]<sub>2</sub>(Ī¼-Ī·<sup>2</sup>:Ī·<sup>2</sup>-C<sub>3</sub>O<sub>3</sub>), and [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<i>i</i>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Me4H</sup>)] gives solely the squarate complex [UĀ(Ī·-C<sub>8</sub>H<sub>6</sub>{Si<i>i</i>Pr<sub>3</sub>-1,4}<sub>2</sub>)Ā(Ī·-Cp<sup>Me4H</sup>)]<sub>2</sub>(Ī¼-Ī·<sup>2</sup>:Ī·<sup>2</sup>-C<sub>4</sub>O<sub>4</sub>). Additionally,
the squarate moiety has been removed from the uranium center in the
last complex by reaction with Me<sub>3</sub>SiCl to afford the TMS
ester of squaric acid, C<sub>4</sub>O<sub>2</sub>(OTMS)<sub>2</sub>
Comparison of the Reactivity of the Low Buried-Volume Carbene Complexes (ITMe)<sub>2</sub>Pd(PhCī¼CPh) and (ITMe)<sub>2</sub>Pd(PhNī»NPh)
The novel Pd(0)-azobenzene
complex (ITMe)<sub>2</sub>PdĀ(PhNī»NPh)
(<b>5</b>) (ITMe = 1,3,4,5-tetramethylimidazol-2-ylidene) has
been isolated and characterized in the solid state and by cyclic voltammetry.
Its reactivity toward EāEā² bonds (E, Eā² = Si,
B, Ge) has been compared with that of the known carbene complex (ITMe)<sub>2</sub>PdĀ(PhCī¼CPh) (<b>2</b>). Whereas <b>2</b> reacts with all EāEā² bonds studied, <b>5</b> only reacted with BāB and BāSi moieties, echoing our
previous catalytic studies on azobenzenes
Double-Sandwich Pentalene Complexes M<sub>2</sub>(pent<sup>ā </sup>)<sub>2</sub> (M = Rh, Pd; pent<sup>ā </sup> = 1,4-Bis(triisopropylsilyl)pentalene): Synthesis, Structure, and Bonding
The bisĀ(pentalene) complexes M<sub>2</sub>(pent<sup>ā </sup>)<sub>2</sub> (M = Rh (<b>1</b>), Pd (<b>2</b>); pent<sup>ā </sup> = 1,4-bisĀ(triisopropylsilyl)Āpentalene) have been synthesized
and structurally characterized. In both <b>1</b> and <b>2</b> the metals have a formal electron count in excess of 18 per metal
center, and DFT calculations indicate antibonding metalāmetal
interactions are present in <b>1</b>, whereas <b>2</b> involves antibonding metalāligand interactions