4,778 research outputs found

    Diet and atherosclerosis

    Get PDF
    Among the various factors affecting the development of atherosclerosis and its complications, the diet emerges as an important influence. This article reviews the evidence linking diet and atherosclerosis; the relation between serum cholesterol concentration and incidence of coronary heart disease, and the effect of various dietary components on the serum lipids of man. The role of diet in the prevention of coronary heart disease is briefly discussed.S. Afr. Med. J., 48, 1660 (1974

    The cosmological constant and the relaxed universe

    Full text link
    We study the role of the cosmological constant (CC) as a component of dark energy (DE). It is argued that the cosmological term is in general unavoidable and it should not be ignored even when dynamical DE sources are considered. From the theoretical point of view quantum zero-point energy and phase transitions suggest a CC of large magnitude in contrast to its tiny observed value. Simply relieving this disaccord with a counterterm requires extreme fine-tuning which is referred to as the old CC problem. To avoid it, we discuss some recent approaches for neutralising a large CC dynamically without adding a fine-tuned counterterm. This can be realised by an effective DE component which relaxes the cosmic expansion by counteracting the effect of the large CC. Alternatively, a CC filter is constructed by modifying gravity to make it insensitive to vacuum energy.Comment: 6 pages, no figures, based on a talk presented at PASCOS 201

    Analytical and numerical studies of disordered spin-1 Heisenberg chains with aperiodic couplings

    Full text link
    We investigate the low-temperature properties of the one-dimensional spin-1 Heisenberg model with geometric fluctuations induced by aperiodic but deterministic coupling distributions, involving two parameters. We focus on two aperiodic sequences, the Fibonacci sequence and the 6-3 sequence. Our goal is to understand how these geometric fluctuations modify the physics of the (gapped) Haldane phase, which corresponds to the ground state of the uniform spin-1 chain. We make use of different adaptations of the strong-disorder renormalization-group (SDRG) scheme of Ma, Dasgupta and Hu, widely employed in the study of random spin chains, supplemented by quantum Monte Carlo and density-matrix renormalization-group numerical calculations, to study the nature of the ground state as the coupling modulation is increased. We find no phase transition for the Fibonacci chain, while we show that the 6-3 chain exhibits a phase transition to a gapless, aperiodicity-dominated phase similar to the one found for the aperiodic spin-1/2 XXZ chain. Contrary to what is verified for random spin-1 chains, we show that different adaptations of the SDRG scheme may lead to different qualitative conclusions about the nature of the ground state in the presence of aperiodic coupling modulations.Comment: Accepted for publication in Physical Review

    Perturbations in the relaxation mechanism for a large cosmological constant

    Full text link
    Recently, a mechanism for relaxing a large cosmological constant (CC) has been proposed [arxiv:0902.2215], which permits solutions with low Hubble rates at late times without fine-tuning. The setup is implemented in the LXCDM framework, and we found a reasonable cosmological background evolution similar to the LCDM model with a fine-tuned CC. In this work we analyse analytically the perturbations in this relaxation model, and we show that their evolution is also similar to the LCDM model, especially in the matter era. Some tracking properties of the vacuum energy are discussed, too.Comment: 18 pages, LaTeX; discussion improved, accepted by CQ

    Cosmologies with a time dependent vacuum

    Full text link
    The idea that the cosmological term, Lambda, should be a time dependent quantity in cosmology is a most natural one. It is difficult to conceive an expanding universe with a strictly constant vacuum energy density, namely one that has remained immutable since the origin of time. A smoothly evolving vacuum energy density that inherits its time-dependence from cosmological functions, such as the Hubble rate or the scale factor, is not only a qualitatively more plausible and intuitive idea, but is also suggested by fundamental physics, in particular by quantum field theory (QFT) in curved space-time. To implement this notion, is not strictly necessary to resort to ad hoc scalar fields, as usually done in the literature (e.g. in quintessence formulations and the like). A "running" Lambda term can be expected on very similar grounds as one expects (and observes) the running of couplings and masses with a physical energy scale in QFT. Furthermore, the experimental evidence that the equation of state of the dark energy could be evolving with time/redshift (including the possibility that it might currently behave phantom-like) suggests that a time-variable Lambda term (possibly accompanied by a variable Newton's gravitational coupling G=G(t)) could account in a natural way for all these features. Remarkably enough, a class of these models (the "new cosmon") could even be the clue for solving the old cosmological constant problem, including the coincidence problem.Comment: LaTeX, 15 pages, 4 figure

    What is there in the black box of dark energy: variable cosmological parameters or multiple (interacting) components?

    Get PDF
    The coincidence problems and other dynamical features of dark energy are studied in cosmological models with variable cosmological parameters and in models with the composite dark energy. It is found that many of the problems usually considered to be cosmological coincidences can be explained or significantly alleviated in the aforementioned models.Comment: 6 pages, 1 figure, talk given at IRGAC2006 (Barcelona, July 11-15, 2006), to appear in J. Phys.

    Hubble expansion and structure formation in the "running FLRW model" of the cosmic evolution

    Full text link
    A new class of FLRW cosmological models with time-evolving fundamental parameters should emerge naturally from a description of the expansion of the universe based on the first principles of quantum field theory and string theory. Within this general paradigm, one expects that both the gravitational Newton's coupling, G, and the cosmological term, Lambda, should not be strictly constant but appear rather as smooth functions of the Hubble rate. This scenario ("running FLRW model") predicts, in a natural way, the existence of dynamical dark energy without invoking the participation of extraneous scalar fields. In this paper, we perform a detailed study of these models in the light of the latest cosmological data, which serves to illustrate the phenomenological viability of the new dark energy paradigm as a serious alternative to the traditional scalar field approaches. By performing a joint likelihood analysis of the recent SNIa data, the CMB shift parameter, and the BAOs traced by the Sloan Digital Sky Survey, we put tight constraints on the main cosmological parameters. Furthermore, we derive the theoretically predicted dark-matter halo mass function and the corresponding redshift distribution of cluster-size halos for the "running" models studied. Despite the fact that these models closely reproduce the standard LCDM Hubble expansion, their normalization of the perturbation's power-spectrum varies, imposing, in many cases, a significantly different cluster-size halo redshift distribution. This fact indicates that it should be relatively easy to distinguish between the "running" models and the LCDM cosmology using realistic future X-ray and Sunyaev-Zeldovich cluster surveys.Comment: Version published in JCAP 08 (2011) 007: 1+41 pages, 6 Figures, 1 Table. Typos corrected. Extended discussion on the computation of the linearly extrapolated density threshold above which structures collapse in time-varying vacuum models. One appendix, a few references and one figure adde

    Full Digital Workflow for Prosthetic Full-Arch Immediate Loading Rehabilitation Using OT-Bridge System: A Case Report

    Get PDF
    Nowadays, digital technologies have brought very important advancements in clinical prosthetic dentistry. However, a full digital workflow is still considered to be challenging in the management of full-arch implant cases with immediate prosthetic loading. The aim of this case report is to show a full-digital workflow for the fabrication of an implant-prosthetic fixed provisional prosthesis for immediate loading on seven implants in the upper maxilla. The static guided implant surgery and the OT Bridge prosthetic system were used to rehabilitate the patient. In this way, the combination of a well-known surgical technique with a peculiar prosthetic system that allows for a certain degree of tolerance resulted in it being useful for full-arch immediate loading. Future research and studies are necessary to prove the reliability of this full-digital protocol
    • …
    corecore