462 research outputs found

    Effects of high order deformation on superheavy high-KK isomers

    Get PDF
    Using, for the first time, configuration-constrained potential-energy-surface calculations with the inclusion of β6\beta_6 deformation, we find remarkable effects of the high order deformation on the high-KK isomers in 254^{254}No, the focus of recent spectroscopy experiments on superheavy nuclei. For shapes with multipolarity six, the isomers are more tightly bound and, microscopically, have enhanced deformed shell gaps at N=152N=152 and Z=100Z=100. The inclusion of β6\beta_6 deformation significantly improves the description of the very heavy high-KK isomers.Comment: 5 pages, 4 figures, 1 table, the version to appear in Phys. Rev.

    Elasticity of semiflexible polymers in two dimensions

    Full text link
    We study theoretically the entropic elasticity of a semi-flexible polymer, such as DNA, confined to two dimensions. Using the worm-like-chain model we obtain an exact analytical expression for the partition function of the polymer pulled at one end with a constant force. The force-extension relation for the polymer is computed in the long chain limit in terms of Mathieu characteristic functions. We also present applications to the interaction between a semi-flexible polymer and a nematic field, and derive the nematic order parameter and average extension of the polymer in a strong field.Comment: 16 pages, 3 figure

    Continuous melting of compact polymers

    Full text link
    The competition between chain entropy and bending rigidity in compact polymers can be addressed within a lattice model introduced by P.J. Flory in 1956. It exhibits a transition between an entropy dominated disordered phase and an energetically favored crystalline phase. The nature of this order-disorder transition has been debated ever since the introduction of the model. Here we present exact results for the Flory model in two dimensions relevant for polymers on surfaces, such as DNA adsorbed on a lipid bilayer. We predict a continuous melting transition, and compute exact values of critical exponents at the transition point.Comment: 5 pages, 1 figur

    In-beam spectroscopy of medium- and high-spin states in 133^{133}Ce

    Full text link
    Medium and high-spin states in 133^{133}Ce were investigated using the 116^{116}Cd(22^{22}Ne, 5n5n) reaction and the Gammasphere array. The level scheme was extended up to an excitation energy of ∼22.8\sim22.8 MeV and spin 93/2 . Eleven bands of quadrupole transitions and two new dipole bands are identified. The connections to low-lying states of the previously known, high-spin triaxial bands were firmly established, thus fixing the excitation energy and, in many cases, the spin parity of the levels. Based on comparisons with cranked Nilsson-Strutinsky calculations and tilted axis cranking covariant density functional theory, it is shown that all observed bands are characterized by pronounced triaxiality. Competing multiquasiparticle configurations are found to contribute to a rich variety of collective phenomena in this nucleus.Comment: 20 pages, 11 figure

    Co-existing structures in 105Ru

    Full text link
    New positive-parity states, having a band-like structure, were observed in 105Ru. The nucleus was produced in induced fission reaction and the prompt gamma-rays, emitted from the fragments, were detected by the EUROBALL III multi-detector array. The partial scheme of excited 105Ru levels is analyzed within the Triaxial-Rotor-plus-Particle approach
    • …
    corecore