2,010 research outputs found
The galactic center black hole as a possible retro-lens for the S2 orbiting star
Holz & Wheeler (\cite{hw}) have recently proposed that a Schwarzschild black
hole may act as a retro-lens which, if illuminated by a powerful light source,
deflects light ray paths to large bending angles and a series of luminous arcs
(or rings in the case of aligned objects) centered on the black hole may form.
Obviously, the most convenient geometry to get retro-lensing images would be
that of a very bright star close to a massive black hole, say the putative
M black hole at the galactic center. Recent
observations of the galactic center region in the -band have revealed the
presence of a very bright main sequence star (labelled S2) with mass
M orbiting at close distance (130-1900 AU) from Sgr A. The
relatively vicinity of S2 to the central massive black hole may offer a unique
laboratory to test the formation of retro-lensing images. The next generation
of space-based telescopes in the -band (like NGST) may have high enough
limiting magnitude necessary to observe such retro-lensing images.Comment: 4 pages, 2 Postscript figures, accepted for pubblications on
Astronomy and Astrophysic
Regge Calculus in Teleparallel Gravity
In the context of the teleparallel equivalent of general relativity, the
Weitzenbock manifold is considered as the limit of a suitable sequence of
discrete lattices composed of an increasing number of smaller an smaller
simplices, where the interior of each simplex (Delaunay lattice) is assumed to
be flat. The link lengths between any pair of vertices serve as independent
variables, so that torsion turns out to be localized in the two dimensional
hypersurfaces (dislocation triangle, or hinge) of the lattice. Assuming that a
vector undergoes a dislocation in relation to its initial position as it is
parallel transported along the perimeter of the dual lattice (Voronoi polygon),
we obtain the discrete analogue of the teleparallel action, as well as the
corresponding simplicial vacuum field equations.Comment: Latex, 10 pages, 2 eps figures, to appear in Class. Quant. Gra
Aharonov-Bohm Effect and Disclinations in an Elastic Medium
In this work we investigate quasiparticles in the background of defects in
solids using the geometric theory of defects. We use the parallel transport
matrix to study the Aharonov-Bohm effect in this background. For quasiparticles
moving in this effective medium we demonstrate an effect similar to the
gravitational Aharonov- Bohm effect. We analyze this effect in an elastic
medium with one and defects.Comment: 6 pages, Revtex
Lensing and caustic effects on cosmological distances
We consider the changes which occur in cosmological distances due to the
combined effects of some null geodesics passing through low-density regions
while others pass through lensing-induced caustics. This combination of effects
increases observed areas corresponding to a given solid angle even when
averaged over large angular scales, through the additive effect of increases on
all scales, but particularly on micro-angular scales; however angular sizes
will not be significantly effected on large angular scales (when caustics
occur, area distances and angular-diameter distances no longer coincide). We
compare our results with other works on lensing, which claim there is no such
effect, and explain why the effect will indeed occur in the (realistic)
situation where caustics due to lensing are significant. Whether or not the
effect is significant for number counts depends on the associated angular
scales and on the distribution of inhomogeneities in the universe. It could
also possibly affect the spectrum of CBR anisotropies on small angular scales,
indeed caustics can induce a non-Gaussian signature into the CMB at small
scales and lead to stronger mixing of anisotropies than occurs in weak lensing.Comment: 28 pages, 6 ps figures, eps
Gauge theory of disclinations on fluctuating elastic surfaces
A variant of a gauge theory is formulated to describe disclinations on
Riemannian surfaces that may change both the Gaussian (intrinsic) and mean
(extrinsic) curvatures, which implies that both internal strains and a location
of the surface in R^3 may vary. Besides, originally distributed disclinations
are taken into account. For the flat surface, an extended variant of the
Edelen-Kadic gauge theory is obtained. Within the linear scheme our model
recovers the von Karman equations for membranes, with a disclination-induced
source being generated by gauge fields. For a single disclination on an
arbitrary elastic surface a covariant generalization of the von Karman
equations is derived.Comment: 13 page
Quasi-Newtonian dust cosmologies
Exact dynamical equations for a generic dust matter source field in a
cosmological context are formulated with respect to a non-comoving
Newtonian-like timelike reference congruence and investigated for internal
consistency. On the basis of a lapse function (the relativistic
acceleration scalar potential) which evolves along the reference congruence
according to (), we find that
consistency of the quasi-Newtonian dynamical equations is not attained at the
first derivative level. We then proceed to show that a self-consistent set can
be obtained by linearising the dynamical equations about a (non-comoving) FLRW
background. In this case, on properly accounting for the first-order momentum
density relating to the non-relativistic peculiar motion of the matter,
additional source terms arise in the evolution and constraint equations
describing small-amplitude energy density fluctuations that do not appear in
similar gravitational instability scenarios in the standard literature.Comment: 25 pages, LaTeX 2.09 (10pt), to appear in Classical and Quantum
Gravity, Vol. 15 (1998
Potencial de aproveitamento de resĂduos agroindustriais atravĂ©s da minhocultura.
bitstream/item/106185/1/Boletim-180-web.pd
Alimentação de minhocas: teste de aceitação do alimento.
bitstream/item/55949/1/comunicado-236.pd
Impact of Baseline Retinal Nonperfusion and Macular Retinal Capillary Nonperfusion on Outcomes in the COPERNICUS and GALILEO Studies
To evaluate the impact of baseline retinal capillary nonperfusion (RNP) and macular retinal capillary nonperfusion (MNP) status on outcomes at week 24 (W24)
- âŠ