129 research outputs found

    In vivo effects of interleukin-17 on haematopoietic cells and cytokine release in normal mice

    Get PDF
    In order to gain more insight into mechanisms operating on the haematopoietic activity of the T-cell-derived cytokine, interleukin-17 (IL-17) and target cells that first respond to its action in vivo, the influence of a single intravenous injection of recombinant mouse IL-17 on bone marrow progenitors, further morphologically recognizable cells and peripheral blood cells was assessed in normal mice up to 72 h after treatment. Simultaneously, the release of IL-6, IL-10, IGF-I, IFN-gamma and NO by bone marrow cells was determined. Results showed that, in bone marrow, IL-17 did not affect granulocyte-macrophage (CFU-GM) progenitors, but induced a persistant increase in the number of morphologically recognizable proliferative granulocytes (PG) up to 48 h after treatment. The number of immature erythroid (BFU-E) progenitors was increased at 48 h, while the number of mature erythroid (CFU-E) progenitors was decreased up to 48 h. In peripheral blood, white blood cells were increased 6 h after treatment, mainly because of the increase in the number of lymphocytes. IL-17 also increased IL-6 release and NO production 6 h after administration. Additional in vitro assessment on bone marrow highly enriched Lin(-) progenitor cells, demonstrated a slightly enhancing effect of IL-17 on CFU-GM and no influence on BFU-E, suggesting the importance of bone marrow accessory cells and secondary induced cytokines for IL-17 mediated effects on progenitor cells. Taken together, these results demonstrate that in vivo IL-17 affects both granulocytic and erythroid lineages, with more mature haematopoietic progenitors responding first to its action. The opposite effects exerted on PG and CFU-E found at the same time indicate that IL-17, as a component of a regulatory network, is able to intervene in mechanisms that shift haematopoiesis from the erythroid to the granulocytic lineage

    Rheumatoid synovial fluid interleukin-17-producing CD4 T cells have abundant tumor necrosis factor-alpha co-expression, but little interleukin-22 and interleukin-23R expression

    Get PDF
    Introduction\ud Th17 cells have been implicated in the pathogenesis of rheumatoid arthritis (RA). The aim of this study was to systematically analyse the phenotype, cytokine profile and frequency of interleukin-17 (IL-17) producing CD4-positive T cells in mononuclear cells isolated from peripheral blood, synovial fluid and synovial tissue of RA patients with established disease, and to correlate cell frequencies with disease activity. \ud \ud Methods\ud Flow cytometry was used to analyse the phenotype and cytokine production of mononuclear cells isolated from peripheral blood (PBMC) (n = 44), synovial fluid (SFMC) (n = 14) and synovium (SVMC) (n = 10) of RA patients and PBMC of healthy controls (n = 13). \ud \ud Results\ud The frequency of IL-17-producing CD4 T cells was elevated in RA SFMC compared with RA PBMC (P = 0.04). However, the frequency of this population in RA SVMC was comparable to that in paired RA PBMC. The percentage of IL-17-producing CD4 T cells coexpressing tumor necrosis factor alpha (TNFα) was significantly increased in SFMC (P = 0.0068). The frequency of IFNγ-producing CD4 T cells was also significantly higher in SFMC than paired PBMC (P = 0.042). The majority of IL-17-producing CD4 T cells coexpressed IFNγ. IL-17-producing CD4 T cells in RA PBMC and SFMC exhibited very little IL-22 or IL-23R coexpression. \ud \ud Conclusions\ud These findings demonstrate a modest enrichment of IL-17-producing CD4 T cells in RA SFMC compared to PBMC. Th17 cells in SFMC produce more TNFα than their PBMC counterparts, but are not a significant source of IL-22 and do not express IL-23R. However, the percentage of CD4 T cells which produce IL-17 in the rheumatoid joint is low, suggesting that other cells may be alternative sources of IL-17 within the joints of RA patients. \ud \u

    Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin

    Get PDF
    Pathological processes involved in the initiation of rheumatoid synovitis remain unclear. We undertook the present study to identify immune and stromal processes that are present soon after the clinical onset of rheumatoid arthritis ( RA) by assessing a panel of T cell, macrophage, and stromal cell related cytokines and chemokines in the synovial fluid of patients with early synovitis. Synovial fluid was aspirated from inflamed joints of patients with inflammatory arthritis of duration 3 months or less, whose outcomes were subsequently determined by follow up. For comparison, synovial fluid was aspirated from patients with acute crystal arthritis, established RA and osteoarthritis. Rheumatoid factor activity was blocked in the synovial fluid samples, and a panel of 23 cytokines and chemokines measured using a multiplex based system. Patients with early inflammatory arthritis who subsequently developed RA had a distinct but transient synovial fluid cytokine profile. The levels of a range of T cell, macrophage and stromal cell related cytokines ( e. g. IL-2, IL-4, IL-13, IL-17, IL-15, basic fibroblast growth factor and epidermal growth factor) were significantly elevated in these patients within 3 months after symptom onset, as compared with early arthritis patients who did not develop RA. In addition, this profile was no longer present in established RA. In contrast, patients with non-rheumatoid persistent synovitis exhibited elevated levels of interferon-gamma at initiation. Early synovitis destined to develop into RA is thus characterized by a distinct and transient synovial fluid cytokine profile. The cytokines present in the early rheumatoid lesion suggest that this response is likely to influence the microenvironment required for persistent RA

    An A2A adenosine receptor agonist, ATL313, reduces inflammation and improves survival in murine sepsis models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathophysiology of sepsis is due in part to early systemic inflammation. Here we describe molecular and cellular responses, as well as survival, in A<sub>2A </sub>adenosine receptor (AR) agonist treated and untreated animals during experimental sepsis.</p> <p>Methods</p> <p>Sepsis was induced in mice by intraperitoneal inoculation of live bacteria (<it>Escherichia coli </it>or <it>Staphylococcus aureus</it>) or lipopolysaccharide (LPS). Mice inoculated with live bacteria were treated with an A<sub>2A </sub>AR agonist (ATL313) or phosphate buffered saline (PBS), with or without the addition of a dose of ceftriaxone. LPS inoculated mice were treated with ATL313 or PBS. Serum cytokines and chemokines were measured sequentially at 1, 2, 4, 8, and 24 hours after LPS was administered. In survival studies, mice were followed until death or for 7 days.</p> <p>Results</p> <p>There was a significant survival benefit in mice infected with live <it>E. coli </it>(100% vs. 20%, <it>p </it>= 0.013) or <it>S. aureus </it>(60% vs. 20%, <it>p </it>= 0.02) when treated with ATL313 in conjunction with an antibiotic versus antibiotic alone. ATL313 also improved survival from endotoxic shock when compared to PBS treatment (90% vs. 40%, <it>p </it>= 0.005). The serum concentrations of TNF-α, MIP-1α, MCP-1, IFN-γ, and IL-17 were decreased by ATL313 after LPS injection (<it>p </it>< 0.05). Additionally, ATL313 increased the concentration of IL-10 under the same conditions (<it>p </it>< 0.05). Circulating white blood cell concentrations were higher in ATL313 treated animals (<it>p </it>< 0.01).</p> <p>Conclusion</p> <p>Further studies are warranted to determine the clinical utility of ATL313 as a novel treatment for sepsis.</p

    Interleukin 17 inhibits myogenic and promotes osteogenic differentiation of C2C12 myoblasts by activating ERK1,2

    Get PDF
    The present study evaluated the role of interleukin (IL) 17 in multilineage commitment of C2C12 myoblastic cells and investigated associated signaling pathways. The results concerning the effects on cell function showed that IL-17 inhibits the migration of C2C12 cells, while not affecting their proliferation. The data regarding the influence on differentiation demonstrated that IL-17 inhibits myogenic differentiation of C2C12 cells by down-regulating the myogenin mRNA level, myosin heavy chain expression and myotube formation, but promotes their osteogenic differentiation by up-regulating the Runt-related transcription factor 2 mRNA level, cyclooxygenase-2 expression and alkaline phosphatase activity. IL-17 exerted these effects by activating ERK1,2 mitogen activated protein kinase signaling pathway, which in turn regulated the expression of relevant genes and proteins to inhibit myogenic differentiation and induce osteogenic differentiation. Additional analysis showed that the induction of osteogenic differentiation by IL-17 is independent of BMP signaling. The results obtained demonstrate the potential of IL-17 not only to inhibit the myogenic differentiation of C2C12 myoblasts but also to convert their differentiation pathway into that of osteoblast lineage providing new insight into the capacities of IL-17 to modulate the differentiation commitment

    Interleukin-17A mRNA and protein expression within cells from the human bronchoalveolar space after exposure to organic dust

    Get PDF
    BACKGROUND: In mice, the cytokine interleukin (IL)-17A causes a local accumulation of neutrophils within the bronchoalveolar space. IL-17A may thereby also contribute to an increased local proteolytic burden. In the current study, we determined whether mRNA for IL-17A is elevated and protein expression of IL-17A occurs locally in inflammatory cells within the human bronchoalveolar space during severe inflammation caused by organic dust. We also assessed the expression of the elastinolytic protease MMP-9 in this airway compartment. METHODS: Six healthy, non-smoking human volunteers were exposed to organic dust in a swine confinement, a potent stimulus of neutrophil accumulation within the human bronchoalveolar space. Bronchoalveolar lavage (BAL) fluid was harvested 2 weeks before and 24 hours after the exposure and total and differential counts were conducted for inflammatory BAL cells. Messenger RNA for IL-17A was measured using reverse transcript polymerase chain reaction-enzyme linked immunoassay (RT-PCR-ELISA). Intracellular immunoreactivity (IR) for IL-17A and MMP-9, respectively, was determined in BAL cells. RESULTS: The exposure to organic dust caused more than a forty-fold increase of mRNA for IL-17A in BAL cells. IL-17A immunoreactivity was detected mainly in BAL lymphocytes, and the number of these IL-17A expressing lymphocytes displayed an eight-fold increase, even though not statistically significant. The increase in IL-17A mRNA was associated with a substantial increase of the number of BAL neutrophils expressing MMP-9 immunoreactivity. CONCLUSION: Exposure to organic dust increases local IL-17A mRNA and because there is intracellular expression in BAL lymphocytes, this suggests that IL-17A protein can originate from lymphocytes within the human bronchoalveolar space. The fact that the increased IL-17A mRNA is associated with an increased number of MMP-9-expressing neutrophils is compatible with IL-17A increasing the local proteolytic burden through its neutrophil-accumulating effect

    Tracing Functional Antigen-Specific CCR6+ Th17 Cells after Vaccination

    Get PDF
    BACKGROUND: The function of T helper cell subsets in vivo depends on their location, and one hallmark of T cell differentiation is the sequential regulation of migration-inducing chemokine receptor expression. CC-chemokine receptor 6 (CCR6) is a trait of tissue-homing effector T cells and has recently been described as a receptor on T helper type 17 (Th17) cells. Th17 cells are associated with autoimmunity and the defence against certain infections. Although, the polarization of Th cells into Th17 cells has been studied extensively in vitro, the development of those cells during the physiological immune response is still elusive. METHODOLOGY/PRINCIPAL FINDINGS: We analysed the development and functionality of Th17 cells in immune-competent mice during an ongoing immune response. In naïve and vaccinated animals CCR6(+) Th cells produce IL-17. The robust homeostatic proliferation and the presence of activation markers on CCR6(+) Th cells indicate their activated status. Vaccination induces antigen-specific CCR6(+) Th17 cells that respond to in vitro re-stimulation with cytokine production and proliferation. Furthermore, depletion of CCR6(+) Th cells from donor leukocytes prevents recipients from severe disease in experimental autoimmune encephalomyelitis, a model for multiple sclerosis in mice. CONCLUSIONS/SIGNIFICANCE: In conclusion, we defined CCR6 as a specific marker for functional antigen-specific Th17 cells during the immune response. Since IL-17 production reaches the highest levels during the immediate early phase of the immune response and the activation of Th17 cells precedes the Th1 cell differentiation we tent to speculate that this particular Th cell subset may represent a first line effector Th cell subpopulation. Interference with the activation of this Th cell subtype provides an interesting strategy to prevent autoimmunity as well as to establish protective immunity against infections

    Ganglioside GM3 Has an Essential Role in the Pathogenesis and Progression of Rheumatoid Arthritis

    Get PDF
    Rheumatoid arthritis (RA), a chronic systemic inflammatory disorder that principally attacks synovial joints, afflicts over 2 million people in the United States. Interleukin (IL)-17 is considered to be a master cytokine in chronic, destructive arthritis. Levels of the ganglioside GM3, one of the most primitive glycosphingolipids containing a sialic acid in the structure, are remarkably decreased in the synovium of patients with RA. Based on the increased cytokine secretions observed in in vitro experiments, GM3 might have an immunologic role. Here, to clarify the association between RA and GM3, we established a collagen-induced arthritis mouse model using the null mutation of the ganglioside GM3 synthase gene. GM3 deficiency exacerbated inflammatory arthritis in the mouse model of RA. In addition, disrupting GM3 induced T cell activation in vivo and promoted overproduction of the cytokines involved in RA. In contrast, the amount of the GM3 synthase gene transcript in the synovium was higher in patients with RA than in those with osteoarthritis. These findings indicate a crucial role for GM3 in the pathogenesis and progression of RA. Control of glycosphingolipids such as GM3 might therefore provide a novel therapeutic strategy for RA
    corecore