12 research outputs found
Evaluation and improvement of the regulatory inference for large co-expression networks with limited sample size
Abstract Background Co-expression has been widely used to identify novel regulatory relationships using high throughput measurements, such as microarray and RNA-seq data. Evaluation studies on co-expression network analysis methods mostly focus on networks of small or medium size of up to a few hundred nodes. For large networks, simulated expression data usually consist of hundreds or thousands of profiles with different perturbations or knock-outs, which is uncommon in real experiments due to their cost and the amount of work required. Thus, the performances of co-expression network analysis methods on large co-expression networks consisting of a few thousand nodes, with only a small number of profiles with a single perturbation, which more accurately reflect normal experimental conditions, are generally uncharacterized and unknown. Methods We proposed a novel network inference methods based on Relevance Low order Partial Correlation (RLowPC). RLowPC method uses a two-step approach to select on the high-confidence edges first by reducing the search space by only picking the top ranked genes from an intial partial correlation analysis and, then computes the partial correlations in the confined search space by only removing the linear dependencies from the shared neighbours, largely ignoring the genes showing lower association. Results We selected six co-expression-based methods with good performance in evaluation studies from the literature: Partial correlation, PCIT, ARACNE, MRNET, MRNETB and CLR. The evaluation of these methods was carried out on simulated time-series data with various network sizes ranging from 100 to 3000 nodes. Simulation results show low precision and recall for all of the above methods for large networks with a small number of expression profiles. We improved the inference significantly by refinement of the top weighted edges in the pre-inferred partial correlation networks using RLowPC. We found improved performance by partitioning large networks into smaller co-expressed modules when assessing the method performance within these modules. Conclusions The evaluation results show that current methods suffer from low precision and recall for large co-expression networks where only a small number of profiles are available. The proposed RLowPC method effectively reduces the indirect edges predicted as regulatory relationships and increases the precision of top ranked predictions. Partitioning large networks into smaller highly co-expressed modules also helps to improve the performance of network inference methods. The RLowPC R package for network construction, refinement and evaluation is available at GitHub: https://github.com/wyguo/RLowPC
On-Chip Generation, Routing, and Detection of Resonance Fluorescence
Quantum optical circuits can be used
to generate, manipulate, and exploit nonclassical states of light
to push semiconductor based photonic information technologies to the
quantum limit. Here, we report the on-chip generation of quantum light
from individual, resonantly excited self-assembled InGaAs quantum
dots, efficient routing over length scales ≥1 mm via GaAs ridge
waveguides, and in situ detection using evanescently coupled integrated
NbN superconducting single photon detectors fabricated on the same
chip. By temporally filtering the time-resolved luminescence signal
stemming from single quantum dots we use the quantum optical circuit
to perform time-resolved excitation spectroscopy on single dots and
demonstrate resonance fluorescence with a line-width of 10 ±
1 μeV; key elements needed for the use of single photons in
prototypical quantum photonic circuits