4 research outputs found

    Identifying Difficult exercises in an eTextbook Using Item Response Theory and Logged Data Analysis

    Full text link
    The growing dependence on eTextbooks and Massive Open Online Courses (MOOCs) has led to an increase in the amount of students' learning data. By carefully analyzing this data, educators can identify difficult exercises, and evaluate the quality of the exercises when teaching a particular topic. In this study, an analysis of log data from the semester usage of the OpenDSA eTextbook was offered to identify the most difficult data structure course exercises and to evaluate the quality of the course exercises. Our study is based on analyzing students' responses to the course exercises. We applied item response theory (IRT) analysis and a latent trait mode (LTM) to identify the most difficult exercises .To evaluate the quality of the course exercises we applied IRT theory. Our findings showed that the exercises that related to algorithm analysis topics represented the most difficult exercises, and there existing six exercises were classified as poor exercises which could be improved or need some attention.Comment: 6 pages,5 figure

    A Predictive Model for Student Performance in Classrooms using Student Interactions with an eTextbook

    Get PDF
    With the rise of online eTextbooks and Massive Open Online Courses (MOOCs), a huge amount of data has been collected related to students’ learning. With the careful analysis of this data, educators can gain useful insights into their students’ performance and their behavior in learning a particular topic. This paper proposes a new model for predicting student performance based on an analysis of how students interact with an interactive online eTextbook. By being able to predict students’ performance early in the course, educators can easily identify students at risk and provide a suitable intervention. We considered two main issues: the prediction of good/bad performance and the prediction of the final exam grade. To build the proposed model, we evaluated the most popular classification and regression algorithms. Random Forest Regression and Multiple Linear Regression have been applied in Regression. While Logistic Regression, decision tree, Random Forest Classifier, K Nearest Neighbors, and Support Vector Machine have been applied in classification. Based on the findings of the experiments, the algorithm with the best result overall in classification was Random Forest Classifier with an accuracy equal to 91.7%, while in the regression it was Random Forest Regression with an R2 equal to 0.977

    A New Cascade-Correlation Growing Deep Learning Neural Network Algorithm

    No full text
    In this paper, a proposed algorithm that dynamically changes the neural network structure is presented. The structure is changed based on some features in the cascade correlation algorithm. Cascade correlation is an important algorithm that is used to solve the actual problem by artificial neural networks as a new architecture and supervised learning algorithm. This process optimizes the architectures of the network which intends to accelerate the learning process and produce better performance in generalization. Many researchers have to date proposed several growing algorithms to optimize the feedforward neural network architectures. The proposed algorithm has been tested on various medical data sets. The results prove that the proposed algorithm is a better method to evaluate the accuracy and flexibility resulting from it
    corecore