172 research outputs found

    Topological Quantum Field Theories and Operator Algebras

    Full text link
    We review "quantum" invariants of closed oriented 3-dimensional manifolds arising from operator algebras.Comment: For proceedings of "International Workshop on Quantum Field Theory and Noncommutative Geometry", Sendai, November 200

    Some computations in the cyclic permutations of completely rational nets

    Full text link
    In this paper we calculate certain chiral quantities from the cyclic permutation orbifold of a general completely rational net. We determine the fusion of a fundamental soliton, and by suitably modified arguments of A. Coste , T. Gannon and especially P. Bantay to our setting we are able to prove a number of arithmetic properties including congruence subgroup properties for S,TS, T matrices of a completely rational net defined by K.-H. Rehren .Comment: 30 Pages Late

    A matrix solution to pentagon equation with anticommuting variables

    Full text link
    We construct a solution to pentagon equation with anticommuting variables living on two-dimensional faces of tetrahedra. In this solution, matrix coordinates are ascribed to tetrahedron vertices. As matrix multiplication is noncommutative, this provides a "more quantum" topological field theory than in our previous works

    Quantum Gravity, Dynamical Triangulation and Higer Derivative Regularization

    Full text link
    We consider a discrete model of euclidean quantum gravity in four dimensions based on a summation over random simplicial manifolds. The action used is the Einstein-Hilbert action plus an R2R^2-term. The phase diagram as a function of the bare coupling constants is studied in the search for a sensible continuum limit. For small values of the coupling constant of the R2R^2 term the model seems to belong to the same universality class as the model with pure Einstein-Hilbert action and exhibits the same phase transition. The order of the transition may be second or higher. The average curvature is positive at the phase transition, which makes it difficult to understand the possible scaling relations of the model.Comment: 27 pages (Latex), figures not included. Post script file containing 15 figures (1000 blocks) available from [email protected]

    Spacetime as a Feynman diagram: the connection formulation

    Get PDF
    Spin foam models are the path integral counterparts to loop quantized canonical theories. In the last few years several spin foam models of gravity have been proposed, most of which live on finite simplicial lattice spacetime. The lattice truncates the presumably infinite set of gravitational degrees of freedom down to a finite set. Models that can accomodate an infinite set of degrees of freedom and that are independent of any background simplicial structure, or indeed any a priori spacetime topology, can be obtained from the lattice models by summing them over all lattice spacetimes. Here we show that this sum can be realized as the sum over Feynman diagrams of a quantum field theory living on a suitable group manifold, with each Feynman diagram defining a particular lattice spacetime. We give an explicit formula for the action of the field theory corresponding to any given spin foam model in a wide class which includes several gravity models. Such a field theory was recently found for a particular gravity model [De Pietri et al, hep-th/9907154]. Our work generalizes this result as well as Boulatov's and Ooguri's models of three and four dimensional topological field theories, and ultimately the old matrix models of two dimensional systems with dynamical topology. A first version of our result has appeared in a companion paper [gr-qc\0002083]: here we present a new and more detailed derivation based on the connection formulation of the spin foam models.Comment: 32 pages, 2 figure

    Colored Group Field Theory

    Full text link
    Group field theories are higher dimensional generalizations of matrix models. Their Feynman graphs are fat and in addition to vertices, edges and faces, they also contain higher dimensional cells, called bubbles. In this paper, we propose a new, fermionic Group Field Theory, posessing a color symmetry, and take the first steps in a systematic study of the topological properties of its graphs. Unlike its bosonic counterpart, the bubbles of the Feynman graphs of this theory are well defined and readily identified. We prove that this graphs are combinatorial cellular complexes. We define and study the cellular homology of this graphs. Furthermore we define a homotopy transformation appropriate to this graphs. Finally, the amplitude of the Feynman graphs is shown to be related to the fundamental group of the cellular complex

    Quantum geometry from 2+1 AdS quantum gravity on the torus

    Full text link
    Wilson observables for 2+1 quantum gravity with negative cosmological constant, when the spatial manifold is a torus, exhibit several novel features: signed area phases relate the observables assigned to homotopic loops, and their commutators describe loop intersections, with properties that are not yet fully understood. We describe progress in our study of this bracket, which can be interpreted as a q-deformed Goldman bracket, and provide a geometrical interpretation in terms of a quantum version of Pick's formula for the area of a polygon with integer vertices.Comment: 19 pages, 11 figures, revised with more explanations, improved figures and extra figures. To appear GER

    Quantum Gravity and the Algebra of Tangles

    Full text link
    In Rovelli and Smolin's loop representation of nonperturbative quantum gravity in 4 dimensions, there is a space of solutions to the Hamiltonian constraint having as a basis isotopy classes of links in R^3. The physically correct inner product on this space of states is not yet known, or in other words, the *-algebra structure of the algebra of observables has not been determined. In order to approach this problem, we consider a larger space H of solutions of the Hamiltonian constraint, which has as a basis isotopy classes of tangles. A certain algebra T, the ``tangle algebra,'' acts as operators on H. The ``empty state'', corresponding to the class of the empty tangle, is conjectured to be a cyclic vector for T. We construct simpler representations of T as quotients of H by the skein relations for the HOMFLY polynomial, and calculate a *-algebra structure for T using these representations. We use this to determine the inner product of certain states of quantum gravity associated to the Jones polynomial (or more precisely, Kauffman bracket).Comment: 16 pages (with major corrections

    Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and p_x+ip_y paired superfluids

    Full text link
    Many trial wavefunctions for fractional quantum Hall states in a single Landau level are given by functions called conformal blocks, taken from some conformal field theory. Also, wavefunctions for certain paired states of fermions in two dimensions, such as p_x+ip_y states, reduce to such a form at long distances. Here we investigate the adiabatic transport of such many-particle trial wavefunctions using methods from two-dimensional field theory. One context for this is to calculate the statistics of widely-separated quasiholes, which has been predicted to be non-Abelian in a variety of cases. The Berry phase or matrix (holonomy) resulting from adiabatic transport around a closed loop in parameter space is the same as the effect of analytic continuation around the same loop with the particle coordinates held fixed (monodromy), provided the trial functions are orthonormal and holomorphic in the parameters so that the Berry vector potential (or connection) vanishes. We show that this is the case (up to a simple area term) for paired states (including the Moore-Read quantum Hall state), and present general conditions for it to hold for other trial states (such as the Read-Rezayi series). We argue that trial states based on a non-unitary conformal field theory do not describe a gapped topological phase, at least in many cases. By considering adiabatic variation of the aspect ratio of the torus, we calculate the Hall viscosity, a non-dissipative viscosity coefficient analogous to Hall conductivity, for paired states, Laughlin states, and more general quantum Hall states. Hall viscosity is an invariant within a topological phase, and is generally proportional to the "conformal spin density" in the ground state.Comment: 44 pages, RevTeX; v2 minor changes; v3 typos corrected, three small addition
    corecore