1,024 research outputs found

    Slimness of graphs

    Full text link
    Slimness of a graph measures the local deviation of its metric from a tree metric. In a graph G=(V,E)G=(V,E), a geodesic triangle (x,y,z)\bigtriangleup(x,y,z) with x,y,zVx, y, z\in V is the union P(x,y)P(x,z)P(y,z)P(x,y) \cup P(x,z) \cup P(y,z) of three shortest paths connecting these vertices. A geodesic triangle (x,y,z)\bigtriangleup(x,y,z) is called δ\delta-slim if for any vertex uVu\in V on any side P(x,y)P(x,y) the distance from uu to P(x,z)P(y,z)P(x,z) \cup P(y,z) is at most δ\delta, i.e. each path is contained in the union of the δ\delta-neighborhoods of two others. A graph GG is called δ\delta-slim, if all geodesic triangles in GG are δ\delta-slim. The smallest value δ\delta for which GG is δ\delta-slim is called the slimness of GG. In this paper, using the layering partition technique, we obtain sharp bounds on slimness of such families of graphs as (1) graphs with cluster-diameter Δ(G)\Delta(G) of a layering partition of GG, (2) graphs with tree-length λ\lambda, (3) graphs with tree-breadth ρ\rho, (4) kk-chordal graphs, AT-free graphs and HHD-free graphs. Additionally, we show that the slimness of every 4-chordal graph is at most 2 and characterize those 4-chordal graphs for which the slimness of every of its induced subgraph is at most 1

    Core congestion is inherent in hyperbolic networks

    Full text link
    We investigate the impact the negative curvature has on the traffic congestion in large-scale networks. We prove that every Gromov hyperbolic network GG admits a core, thus answering in the positive a conjecture by Jonckheere, Lou, Bonahon, and Baryshnikov, Internet Mathematics, 7 (2011) which is based on the experimental observation by Narayan and Saniee, Physical Review E, 84 (2011) that real-world networks with small hyperbolicity have a core congestion. Namely, we prove that for every subset XX of vertices of a δ\delta-hyperbolic graph GG there exists a vertex mm of GG such that the disk D(m,4δ)D(m,4 \delta) of radius 4δ4 \delta centered at mm intercepts at least one half of the total flow between all pairs of vertices of XX, where the flow between two vertices x,yXx,y\in X is carried by geodesic (or quasi-geodesic) (x,y)(x,y)-paths. A set SS intercepts the flow between two nodes xx and yy if SS intersect every shortest path between xx and yy. Differently from what was conjectured by Jonckheere et al., we show that mm is not (and cannot be) the center of mass of XX but is a node close to the median of XX in the so-called injective hull of XX. In case of non-uniform traffic between nodes of XX (in this case, the unit flow exists only between certain pairs of nodes of XX defined by a commodity graph RR), we prove a primal-dual result showing that for any ρ>5δ\rho>5\delta the size of a ρ\rho-multi-core (i.e., the number of disks of radius ρ\rho) intercepting all pairs of RR is upper bounded by the maximum number of pairwise (ρ3δ)(\rho-3\delta)-apart pairs of RR
    corecore