338 research outputs found
Heating of coronal loops: weak MHD turbulence and scaling laws
To understand the nonlinear dynamics of the Parker scenario for coronal
heating, long-time high-resolution simulations of the dynamics of a coronal
loop in cartesian geometry are carried out. A loop is modeled as a box extended
along the direction of the strong magnetic field in which the system is
embedded. At the top and bottom plates, which represent the photosphere,
velocity fields mimicking photospheric motions are imposed.
We show that the nonlinear dynamics is described by different regimes of MHD
anisotropic turbulence, with spectra characterized by intertial range power
laws whose indexes range from Kolmogorov-like values () up to . We briefly describe the bearing for coronal heating rates.Comment: 8 pages, 4 figure
Turbulent Coronal Heating Mechanisms: Coupling of Dynamics and Thermodynamics
Context. Photospheric motions shuffle the footpoints of the strong axial
magnetic field that threads coronal loops giving rise to turbulent nonlinear
dynamics characterized by the continuous formation and dissipation of
field-aligned current sheets where energy is deposited at small-scales and the
heating occurs. Previous studies show that current sheets thickness is orders
of magnitude smaller than current state of the art observational resolution
(~700 km).
Aim. In order to understand coronal heating and interpret correctly
observations it is crucial to study the thermodynamics of such a system where
energy is deposited at unresolved small-scales.
Methods. Fully compressible three-dimensional magnetohydrodynamic simulations
are carried out to understand the thermodynamics of coronal heating in the
magnetically confined solar corona.
Results. We show that temperature is highly structured at scales below
observational resolution and nonhomogeneously distributed so that only a
fraction of the coronal mass and volume gets heated at each time.
Conclusions. This is a multi-thermal system where hotter and cooler plasma
strands are found one next to the other also at sub-resolution scales and
exhibit a temporal dynamics.Comment: A&A Letter, in pres
FROM ARCHIVE DOCUMENTATION TO ONLINE 3D MODEL VISUALIZATION OF NO LONGER EXISTING STRUCTURES: THE TURIN 1911 PROJECT
Rebuilding the past of cultural heritage through digitization, archiving and visualization by means of digital technology is becoming an emerging issue to ensure the transmission of physical and digital documentation to future generations as evidence of culture, but also to enable present generation to enlarge, facilitate and cross relate data and information in new ways. In this global effort, the digital 3D documentation of no longer existing cultural heritage can be essential for the understanding of past events and nowadays, various digital techniques and tools are developing for multiple purposes.
In the present research the entire workflow, starting from archive documentation collection and digitization to the 3D models metrically controlled creation and online sharing, is considered. The technical issues to obtain a detail 3D model are examined stressing limits and potentiality of 3D reconstruction of disappeared heritage and its visualization exploiting three complexes belonging to 1911 Turin World’s Fair
Nonlinear Dynamics of the Parker Scenario for Coronal Heating
The Parker or field line tangling model of coronal heating is studied
comprehensively via long-time high-resolution simulations of the dynamics of a
coronal loop in cartesian geometry within the framework of reduced
magnetohydrodynamics (RMHD). Slow photospheric motions induce a Poynting flux
which saturates by driving an anisotropic turbulent cascade dominated by
magnetic energy. In physical space this corresponds to a magnetic topology
where magnetic field lines are barely entangled, nevertheless current sheets
(corresponding to the original tangential discontinuities hypothesized by
Parker) are continuously formed and dissipated.
Current sheets are the result of the nonlinear cascade that transfers energy
from the scale of convective motions () down to the dissipative
scales, where it is finally converted to heat and/or particle acceleration.
Current sheets constitute the dissipative structure of the system, and the
associated magnetic reconnection gives rise to impulsive ``bursty'' heating
events at the small scales. This picture is consistent with the slender loops
observed by state-of-the-art (E)UV and X-ray imagers which, although apparently
quiescent, shine bright in these wavelengths with little evidence of entangled
features.
The different regimes of weak and strong MHD turbulence that develop, and
their influence on coronal heating scalings, are shown to depend on the loop
parameters, and this dependence is quantitatively characterized: weak
turbulence regimes and steeper spectra occur in {\it stronger loop fields} and
lead to {\it larger heating rates} than in weak field regions.Comment: 22 pages, 18 figures, uses emulateapj, for mpeg file associated to
Figure 17e see (temporarily) http://www.df.unipi.it/~rappazzo/arxiv/jfl.mpg,
ApJ, in pres
- …