23 research outputs found
Why must we work in the phase space?
We are going to prove that the phase-space description is fundamental both in
the classical and quantum physics. It is shown that many problems in
statistical mechanics, quantum mechanics, quasi-classical theory and in the
theory of integrable systems may be well-formulated only in the phase-space
language.Comment: 130 page
Coherent States Measurement Entropy
Coherent states (CS) quantum entropy can be split into two components. The
dynamical entropy is linked with the dynamical properties of a quantum system.
The measurement entropy, which tends to zero in the semiclassical limit,
describes the unpredictability induced by the process of a quantum approximate
measurement. We study the CS--measurement entropy for spin coherent states
defined on the sphere discussing different methods dealing with the time limit
. In particular we propose an effective technique of computing
the entropy by iterated function systems. The dependence of CS--measurement
entropy on the character of the partition of the phase space is analysed.Comment: revtex, 22 pages, 14 figures available upon request (e-mail:
[email protected]). Submitted to J.Phys.
Perspectives: Quantum Mechanics on Phase Space
The basic ideas in the theory of quantum mechanics on phase space are
illustrated through an introduction of generalities, which seem to underlie
most if not all such formulations and follow with examples taken primarily from
kinematical particle model descriptions exhibiting either Galileian or
Lorentzian symmetry. The structures of fundamental importance are the relevant
(Lie) groups of symmetries and their homogeneous (and associated) spaces that,
in the situations of interest, also possess Hamiltonian structures. Comments
are made on the relation between the theory outlined and a recent paper by
Carmeli, Cassinelli, Toigo, and Vacchini.Comment: "Quantum Structures 2004" - Meeting of the International Quantum
Structures Association; Denver, Colorado; 17-22 July, 200
On Locality in Quantum General Relativity and Quantum Gravity
The physical concept of locality is first analyzed in the special
relativistic quantum regime, and compared with that of microcausality and the
local commutativity of quantum fields. Its extrapolation to quantum general
relativity on quantum bundles over curved spacetime is then described. It is
shown that the resulting formulation of quantum-geometric locality based on the
concept of local quantum frame incorporating a fundamental length embodies the
key geometric and topological aspects of this concept. Taken in conjunction
with the strong equivalence principle and the path-integral formulation of
quantum propagation, quantum-geometric locality leads in a natural manner to
the formulation of quantum-geometric propagation in curved spacetime. Its
extrapolation to geometric quantum gravity formulated over quantum spacetime is
described and analyzed.Comment: Mac-Word file translated to postscript for submission. The author may
be reached at: [email protected] To appear in Found. Phys. vol. 27,
199
Wigner function for twisted photons
A comprehensive theory of the Weyl-Wigner formalism for the canonical pair
angle-angular momentum is presented, with special emphasis in the implications
of rotational periodicity and angular-momentum discreteness.Comment: 6 pages, 4 figure
Why must we work in the phase space?
We are going to prove that the phase-space description is fundamental both in the classical and quantum physics. It is shown that many problems in statistical mechanics, quantum mechanics, quasi-classical theory and in the theory of integrable systems may be well-formulated only in the phase-space language. There are some misunderstandings and confusions concerning the concept of induced probability and entropy on the submanifolds of the phase space. First of all, they are restricted only to hypersurfaces in the phase space, i.e., to the manifolds of the defect of dimension equal to one. But what is more important, it was assumed there that the phase-space geometry was metrical-Euclidean and the resulting metric geometry of the microcanonical ensemble was obtained by the reduction of the primary Euclidean geometry to the corresponding submanifold. But it is well-known that the phase-space manifold has no natural metric geometry and that all concepts to be used must be of symplectic origin. Otherwise they are just accidental or artificial. So, instead we show that even if the configuration space is endowed with some metric, then in general the true geometry of submanifolds in the corresponding cotangent bundle (phase-space) is of different origin which has nothing to do with the mentioned configuration space Riemannian geometry, instead it is of purely symplectic origin. And this is sufficient to constructing microcanonical ensemble and entropy concepts. In any case, the purely symplectic phase-space geometry is sufficient to obtain everything within the completely metric-free language.Chcemy wykazać, że opis zjawisk mechanicznych oparty na pojęciu przestrzeni fazowej jest fundamentalny zarówno z klasycznego jak i kwantowego punktu widzenia. Pokazujemy, że liczne problemy mechaniki statystycznej, teorii kwantów i mechaniki quasiklasycznej oraz teorii układów całkowalnych mogą być dobrze sformułowane wyłącznie w języku symplektycznej przestrzeni fazowej. Istnieje mnóstwo nieporozumień czy wręcz błędów dotyczących pojęcia prawdopodobieństwa warunkowego i entropii w przypadku podrozmaitości przestrzeni fazowej. Przede wszystkim są one zazwyczaj definiowane dla przypadku powierzchni o defekcie wymiaru jeden. Co jednak dużo ważniejsze, zwykle zakłada się, że przestrzeń fazowa ma jednocześnie metryczną geometrię Euklidesową. Geometria metryczna podrozmaitości, używana w konstrukcji zespołu mikrokanonicznego, jest otrzymywana jako redukcja, ograniczenie pierwotnej geometrii Euklidesowej. Wiadomo jednak, że rozmaitość przestrzeni fazowej nie ma żadnej „wrodzonej” geometrii metrycznej i że wszystkie podstawowe pojęcia, wyjąwszy dynamikę konkretnych modeli, muszą mieć czysto symplektyczną genezę. W przeciwnym wypadku są one przypadkowe lub wręcz sztuczne. Zatem, nawet jeśli wyjściowa przestrzeń konfiguracyjna ma zadaną geometrię typu metrycznego, to na ogół właściwa geometria podrozmaitości w wiązce ko-stycznej, przynajmniej ta istotna dla pojęć statystycznych, nie jest związana z metryką konfiguracyjną i ma czysto symplektyczną genezę. I to wystarcza dla skonstruowania pojęcia zespołu mikrokanonicznego i entropii. W każdym razie, czysto symplektyczna geometria przestrzeni fazowej wystarcza do otrzymania pojęć mechaniki statystycznej w obrębie języka całkowicie niemetrycznego. W przypadku, gdy przestrzeń konfiguracyjna jest Euklidesowa, implikowane przez metrykę pojęcia statystyczne pokrywają się z symplektycznymi. W ogólnym wypadku nie musi tak być. Pokazujemy, że pojęcia te dadzą się wprowadzić w języku czysto symplektycznym, niezależnym od metryki konfiguracyjnej. Dotyczy to także uogólnionych rozkładów mikrokanonicznych
On central atoms of Archimedean atomic lattice effect algebras
summary:If element of a lattice effect algebra is central, then the interval is a lattice effect algebra with the new top element and with inherited partial binary operation . It is a known fact that if the set of central elements of is an atomic Boolean algebra and the supremum of all atoms of in equals to the top element of , then is isomorphic to a direct product of irreducible effect algebras ([16]). In [10] Paseka and Riečanová published as open problem whether is a bifull sublattice of an Archimedean atomic lattice effect algebra . We show that there exists a lattice effect algebra with atomic which is not a bifull sublattice of . Moreover, we show that also , the center of compatibility, may not be a bifull sublattice of