172 research outputs found

    hMENA11a contributes to HER3-mediated resistance to PI3K inhibitors in HER2-overexpressing breast cancer cells.

    Get PDF
    Human Mena (hMENA), an actin regulatory protein of the ENA/VASP family, cooperates with ErbB receptor family signaling in breast cancer. It is overexpressed in high-risk preneoplastic lesions and in primary breast tumors where it correlates with HER2 overexpression and an activated status of AKT and MAPK. The concomitant overexpression of hMENA and HER2 in breast cancer patients is indicative of a worse prognosis. hMENA is expressed along with alternatively expressed isoforms, hMENA11a and hMENAΔv6 with opposite functions. A novel role for the epithelial-associated hMENA11a isoform in sustaining HER3 activation and pro-survival pathways in HER2-overexpressing breast cancer cells has been identified by reverse phase protein array and validated in vivo in a series of breast cancer tissues. As HER3 activation is crucial in mechanisms of cell resistance to PI3K inhibitors, we explored whether hMENA11a is involved in these resistance mechanisms. The specific hMENA11a depletion switched off the HER3-related pathway activated by PI3K inhibitors and impaired the nuclear accumulation of HER3 transcription factor FOXO3a induced by PI3K inhibitors, whereas PI3K inhibitors activated hMENA11a phosphorylation and affected its localization. At the functional level, we found that hMENA11a sustains cell proliferation and survival in response to PI3K inhibitor treatment, whereas hMENA11a silencing increases molecules involved in cancer cell apoptosis. As shown in three-dimensional cultures, hMENA11a contributes to resistance to PI3K inhibition because its depletion drastically reduced cell viability upon treatment with PI3K inhibitor BEZ235. Altogether, these results indicate that hMENA11a in HER2-overexpressing breast cancer cells sustains HER3/AKT axis activation and contributes to HER3-mediated resistance mechanisms to PI3K inhibitors. Thus, hMENA11a expression can be proposed as a marker of HER3 activation and resistance to PI3K inhibition therapies, to select patients who may benefit from these combined targeted treatments. hMENA11a activity could represent a new target for antiproliferative therapies in breast cancer

    Aquazol as a binder for retouching paints. An evaluation through analytical pyrolysis and thermal analysis

    Get PDF
    Aquazol poly (2-ethyl-oxazoline) is a tertiary aliphatic amide, with physical and chemical properties that are exploited in a variety of ways, from pharmaceutical applications to the conservation of cultural heritage. In this study, we evaluated the use of Aquazol as a new binder for retouching paint in the restoration of artworks. Aquazol 500 admixed with various formulations of organic red pigments was used to prepare paint replicas which were artificially aged and investigated by a multi-analytical approach based on analytical pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS), and thermogravimetry (TG), complemented by FTIR and LIBS spectroscopy. This is the first study on the ageing phenomena of Aquazol 500 using analytical pyrolysis and thermogravimetric analysis. The influence of the pigments' components on the pyrolysis behavior of Aquazol was also investigated. The paint replicas did not show significant modifications during artificial ageing. This thus highlights the optimal properties of Aquazol 500 as a binder for retouching, in addition to its already established suitability as a filler or consolidant in the restoration of artifacts. Interestingly, when Aquazol 500 is used in formulations containing organic pigments, Aquazol-pigment interactions are observed, strongly depending on the pigment used

    The Cooperation between hMena Overexpression and HER2 Signalling in Breast Cancer

    Get PDF
    hMena and the epithelial specific isoform hMena11a are actin cytoskeleton regulatory proteins belonging to the Ena/VASP family. EGF treatment of breast cancer cell lines upregulates hMena/hMena11a expression and phosphorylates hMena11a, suggesting cross-talk between the ErbB receptor family and hMena/hMena11a in breast cancer. The aim of this study was to determine whether the hMena/hMena11a overexpression cooperates with HER-2 signalling, thereby affecting the HER2 mitogenic activity in breast cancer. In a cohort of breast cancer tissue samples a significant correlation among hMena, HER2 overexpression, the proliferation index (high Ki67), and phosphorylated MAPK and AKT was found and among the molecular subtypes the highest frequency of hMena overexpressing tumors was found in the HER2 subtype. From a clinical viewpoint, concomitant overexpression of HER2 and hMena identifies a subgroup of breast cancer patients showing the worst prognosis, indicating that hMena overexpression adds prognostic information to HER2 overexpressing tumors. To identify a functional link between HER2 and hMena, we show here that HER2 transfection in MCF7 cells increased hMena/hMena11a expression and hMena11a phosphorylation. On the other hand, hMena/hMena11a knock-down reduced HER3, AKT and p44/42 MAPK phosphorylation and inhibited the EGF and NRG1-dependent HER2 phosphorylation and cell proliferation. Of functional significance, hMena/hMena11a knock-down reduced the mitogenic activity of EGF and NRG1. Collectively these data provide new insights into the relevance of hMena and hMena11a as downstream effectors of the ErbB receptor family which may represent a novel prognostic indicator in breast cancer progression, helping to stratify patients

    hMENA isoforms regulate cancer intrinsic type I IFN signaling and extrinsic mechanisms of resistance to immune checkpoint blockade in NSCLC

    Get PDF
    BACKGROUND: Understanding how cancer signaling pathways promote an immunosuppressive program which sustains acquired or primary resistance to immune checkpoint blockade (ICB) is a crucial step in improving immunotherapy efficacy. Among the pathways that can affect ICB response is the interferon (IFN) pathway that may be both detrimental and beneficial. The immune sensor retinoic acid-inducible gene I (RIG-I) induces IFN activation and secretion and is activated by actin cytoskeleton disturbance. The actin cytoskeleton regulatory protein hMENA, along with its isoforms, is a key signaling hub in different solid tumors, and recently its role as a regulator of transcription of genes encoding immunomodulatory secretory proteins has been proposed. When hMENA is expressed in tumor cells with low levels of the epithelial specific hMENA11a isoform, identifies non-small cell lung cancer (NSCLC) patients with poor prognosis. Aim was to identify cancer intrinsic and extrinsic pathways regulated by hMENA11a downregulation as determinants of ICB response in NSCLC. Here, we present a potential novel mechanism of ICB resistance driven by hMENA11a downregulation. METHODS: Effects of hMENA11a downregulation were tested by RNA-Seq, ATAC-Seq, flow cytometry and biochemical assays. ICB-treated patient tumor tissues were profiled by Nanostring IO 360 Panel enriched with hMENA custom probes. OAK and POPLAR datasets were used to validate our discovery cohort. RESULTS: Transcriptomic and biochemical analyses demonstrated that the depletion of hMENA11a induces IFN pathway activation, the production of different inflammatory mediators including IFNβ via RIG-I, sustains the increase of tumor PD-L1 levels and activates a paracrine loop between tumor cells and a unique macrophage subset favoring an epithelial-mesenchymal transition (EMT). Notably, when we translated our results in a clinical setting of NSCLC ICB-treated patients, transcriptomic analysis revealed that low expression of hMENA11a, high expression of IFN target genes and high macrophage score identify patients resistant to ICB therapy. CONCLUSIONS: Collectively, these data establish a new function for the actin cytoskeleton regulator hMENA11a in modulating cancer cell intrinsic type I IFN signaling and extrinsic mechanisms that promote protumoral macrophages and favor EMT. These data highlight the role of actin cytoskeleton disturbance in activating immune suppressive pathways that may be involved in resistance to ICB in NSCLC

    Alpha-enolase (ENO1) controls alpha v/beta 3 integrin expression and regulates pancreatic cancer adhesion, invasion, and metastasis

    Get PDF
    Background: We have previously shown that in pancreatic ductal adenocarcinoma (PDA) cells, the glycolytic enzyme alpha-enolase (ENO1) also acts as a plasminogen receptor and promotes invasion and metastasis formation. Moreover, ENO1 silencing in PDA cells induces oxidative stress, senescence and profoundly modifies PDA cell metabolism. Although anti-ENO1 antibody inhibits PDA cell migration and invasion, little is known about the role of ENO1 in regulating cell-cell and cell-matrix contacts. We therefore investigated the effect of ENO1 silencing on the modulation of cell morphology, adhesion to matrix substrates, cell invasiveness, and metastatic ability. Methods: The membrane and cytoskeleton modifications that occurred in ENO1-silenced (shENO1) PDA cells were investigated by a combination of confocal microscopy and atomic force microscopy (AFM). The effect of ENO1 silencing was then evaluated by phenotypic and functional experiments to identify the role of ENO1 in adhesion, migration, and invasion, as well as in senescence and apoptosis. The experimental results were then validated in a mouse model. Results: We observed a significant increase in the roughness of the cell membrane due to ENO1 silencing, a feature associated with an impaired ability to migrate and invade, along with a significant downregulation of proteins involved in cell-cell and cell-matrix adhesion, including alpha v/beta 3 integrin in shENO1 PDA cells. These changes impaired the ability of shENO1 cells to adhere to Collagen I and IV and Fibronectin and caused an increase in RGD-independent adhesion to vitronectin (VN) via urokinase plasminogen activator receptor (uPAR). Binding of uPAR to VN triggers integrin-mediated signals, which result in ERK1-2 and RAC activation, accumulation of ROS, and senescence. In shENO1 cancer cells, the use of an anti-uPAR antibody caused significant reduction of ROS production and senescence. Overall, a decrease of in vitro and in vivo cell migration and invasion of shENO1 PDA cells was observed. Conclusion: These data demonstrate that ENO1 promotes PDA survival, migration, and metastasis through cooperation with integrins and uPAR

    Intraoperative Local Field Potential Beta Power and Three-Dimensional Neuroimaging Mapping Predict Long-Term Clinical Response to Deep Brain Stimulation in Parkinson Disease: A Retrospective Study

    Get PDF
    background: directional deep brain stimulation (DBS) leads allow a fine-tuning control of the stimulation field, however, this new technology could increase the DBS programming time because of the higher number of the possible combinations used in directional DBS than in standard nondirectional electrodes. neuroimaging leads localization techniques and local field potentials (LFPs) recorded from DBS electrodes implanted in basal ganglia are among the most studied biomarkers for DBS programing. objective: this study aimed to evaluate whether intraoperative LFPs beta power and neuroimaging reconstructions correlate with contact selection in clinical programming of DBS in patients with Parkinson disease (PD). materials and methods: In this retrospective study, routine intraoperative LFPs recorded from all contacts in the subthalamic nucleus (STN) of 14 patients with PD were analyzed to calculate the beta band power for each contact. neuroimaging reconstruction obtained through brainlab elements planning software detected contacts localized within the STN. clinical DBS programming contact scheme data were collected after one year from the implant. statistical analysis evaluated the diagnostic performance of LFPs beta band power and neuroimaging data for identification of the contacts selected with clinical programming. we evaluated whether the most effective contacts identified based on the clinical response after one year from implant were also those with the highest level of beta activity and localized within the STN in neuroimaging reconstruction. results: LFPs beta power showed a sensitivity of 67%, a negative predictive value (NPV) of 84%, a diagnostic odds ratio (DOR) of 2.7 in predicting the most effective contacts as evaluated through the clinical response. neuroimaging reconstructions showed a sensitivity of 62%, a NPV of 77%, a DOR of 1.20 for contact effectivity prediction. the combined use of the two methods showed a sensitivity of 87%, a NPV of 87%, a DOR of 2.7 for predicting the clinically more effective contacts. conclusions: the combined use of LFPs beta power and neuroimaging localization and segmentations predict which are the most effective contacts as selected on the basis of clinical programming after one year from implant of DBS. the use of predictors in contact selection could guide clinical programming and reduce time needed for it

    Thermostatistics of deformed bosons and fermions

    Full text link
    Based on the q-deformed oscillator algebra, we study the behavior of the mean occupation number and its analogies with intermediate statistics and we obtain an expression in terms of an infinite continued fraction, thus clarifying successive approximations. In this framework, we study the thermostatistics of q-deformed bosons and fermions and show that thermodynamics can be built on the formalism of q-calculus. The entire structure of thermodynamics is preserved if ordinary derivatives are replaced by the use of an appropriate Jackson derivative and q-integral. Moreover, we derive the most important thermodynamic functions and we study the q-boson and q-fermion ideal gas in the thermodynamic limit.Comment: 14 pages, 2 figure
    • …
    corecore