243 research outputs found
Fatal lymphoproliferation and acute monocytic leukemia-like disease following infectious mononucleosis in the elderly
Three elderly patients are reported, in whom serologically confirmed recent infectious mononucleosis is followed by fatal lymphoproliferation (case 1), by acute monocytic leukemia (case 2), and by acute probably monocytic leukemia (case 3)
Epstein-Barr-Virus - Ein klinisch relevanter Marker für das Nasopharynxkarzinom? = Epstein-Barr virus - a clinically relevant feature of nasopharyngeal carcinoma? (author's transl.)
Nasopharyngeal carcinoma (NPC) has been linked to Epstein-Barr Virus (EBV) by seroepidemiological evidence and by the regular proof of EBV-DNA in the epithelial tumor cells. We have been able to study the serological parameters of 62 NPC patients of the local ENT-Clinic. All patients were kaukasians in contrast to a previous study by Henle et al. Our results emphasize the remarkable predominance of EBV-IgA antibodies to viral capsid antigen (VCA) and early antigen (EA) in NPC patients and prove the value of the test for the initial diagnosis of the disease. Follow-up studies with subsequent serological tests strongly suggest that this test is related to the stage of the disease. We have also found NPC-typical serological EBV-IgA titers in 3 lymphoepithelial carcinomas of the tonsil and the soft palate. Similar titers have been found in two cases of poorly differentiated carcinomas of the base of the tongue. All these tumors arise in the lymphoepithelial tissue of Waldeyer's ring. We conclude that possibly some carcinomas of Waldeyer's ring are similarly related to EBV as nasopharyngeal carcinomas are
Can Molecular Motors Drive Distance Measurements in Injured Neurons?
Injury to nerve axons induces diverse responses in neuronal cell bodies, some of which are influenced by the distance from the site of injury. This suggests that neurons have the capacity to estimate the distance of the injury site from their cell body. Recent work has shown that the molecular motor dynein transports importin-mediated retrograde signaling complexes from axonal lesion sites to cell bodies, raising the question whether dynein-based mechanisms enable axonal distance estimations in injured neurons? We used computer simulations to examine mechanisms that may provide nerve cells with dynein-dependent distance assessment capabilities. A multiple-signals model was postulated based on the time delay between the arrival of two or more signals produced at the site of injury–a rapid signal carried by action potentials or similar mechanisms and slower signals carried by dynein. The time delay between the arrivals of these two types of signals should reflect the distance traversed, and simulations of this model show that it can indeed provide a basis for distance measurements in the context of nerve injuries. The analyses indicate that the suggested mechanism can allow nerve cells to discriminate between distances differing by 10% or more of their total axon length, and suggest that dynein-based retrograde signaling in neurons can be utilized for this purpose over different scales of nerves and organisms. Moreover, such a mechanism might also function in synapse to nucleus signaling in uninjured neurons. This could potentially allow a neuron to dynamically sense the relative lengths of its processes on an ongoing basis, enabling appropriate metabolic output from cell body to processes
Diversity of Raft-Like Domains in Late Endosomes
BACKGROUND: Late endosomes, the last sorting station in the endocytic pathway before lysosomes, are pleiomorphic organelles composed of tubular elements as well as vesicular regions with a characteristic multivesicular appearance, which play a crucial role in intracellular trafficking. Here, we have investigated whether, in addition to these morphologically distinguishable regions, late endosomal membranes are additionally sub-compartmentalized into membrane microdomains. METHODOLOGY/PRINCIPAL FINDINGS: Using sub-organellar fractionation techniques, both with and without detergents, combined with electron microscopy, we found that both the limiting membrane of the organel and the intraluminal vesicles contain raft-type membrane domains. Interestingly, these differentially localized domains vary in protein composition and physico-chemical properties. CONCLUSIONS/SIGNIFICANCE: In addition to the multivesicular organization, we find that late endosomes contain cholesterol rich microdomains both on their limiting membrane and their intraluminal vesicles that differ in composition and properties. Implications of these findings for late endosomal functions are discussed
NGF Causes TrkA to Specifically Attract Microtubules to Lipid Rafts
Membrane protein sorting is mediated by interactions between proteins and lipids. One mechanism that contributes to sorting involves patches of lipids, termed lipid rafts, which are different from their surroundings in lipid and protein composition. Although the nerve growth factor (NGF) receptors, TrkA and p75NTR collaborate with each other at the plasma membrane to bind NGF, these two receptors are endocytosed separately and activate different cellular responses. We hypothesized that receptor localization in membrane rafts may play a role in endocytic sorting. TrkA and p75NTR both reside in detergent-resistant membranes (DRMs), yet they responded differently to a variety of conditions. The ganglioside, GM1, caused increased association of NGF, TrkA, and microtubules with DRMs, but a decrease in p75NTR. When microtubules were induced to polymerize and attach to DRMs by in vitro reactions, TrkA, but not p75NTR, was bound to microtubules in DRMs and in a detergent-resistant endosomal fraction. NGF enhanced the interaction between TrkA and microtubules in DRMs, yet tyrosine phosphorylated TrkA was entirely absent in DRMs under conditions where activated TrkA was detected in detergent-sensitive membranes and endosomes. These data indicate that TrkA and p75NTR partition into membrane rafts by different mechanisms, and that the fraction of TrkA that associates with DRMs is internalized but does not directly form signaling endosomes. Rather, by attracting microtubules to lipid rafts, TrkA may mediate other processes such as axon guidance
Glioblastoma—a moving target
The slow development of effective treatment of glioblastoma is contrasted by the rapidly advancing research on the molecular mechanisms underlying the disease. Amplification and overexpression of receptor tyrosine kinases, particularly EGFR and PDGFRA, are complemented by mutations in the PI3K, RB1, and p53 signaling pathways. In addition to finding effective means to target these pathways, we may take advantage of the recent understanding of the hierarchical structure of tumor cell populations, where the progressive expansion of the tumor relies on a minor subpopulation of glioma stem cells, or glioma-initiating cells. Finding ways to reprogram these cells and block their self-renewal is one of the most important topics for future research
- …