545 research outputs found

    Exact Solution for the Time Evolution of Network Rewiring Models

    Full text link
    We consider the rewiring of a bipartite graph using a mixture of random and preferential attachment. The full mean field equations for the degree distribution and its generating function are given. The exact solution of these equations for all finite parameter values at any time is found in terms of standard functions. It is demonstrated that these solutions are an excellent fit to numerical simulations of the model. We discuss the relationship between our model and several others in the literature including examples of Urn, Backgammon, and Balls-in-Boxes models, the Watts and Strogatz rewiring problem and some models of zero range processes. Our model is also equivalent to those used in various applications including cultural transmission, family name and gene frequencies, glasses, and wealth distributions. Finally some Voter models and an example of a Minority game also show features described by our model.Comment: This version contains a few footnotes not in published Phys.Rev.E versio

    Collective dynamics of two-mode stochastic oscillators

    Full text link
    We study a system of two-mode stochastic oscillators coupled through their collective output. As a function of a relevant parameter four qualitatively distinct regimes of collective behavior are observed. In an extended region of the parameter space the periodicity of the collective output is enhanced by the considered coupling. This system can be used as a new model to describe synchronization-like phenomena in systems of units with two or more oscillation modes. The model can also explain how periodic dynamics can be generated by coupling largely stochastic units. Similar systems could be responsible for the emergence of rhythmic behavior in complex biological or sociological systems.Comment: 4 pages, RevTex, 5 figure

    The problem of shot selection in basketball

    Get PDF
    In basketball, every time the offense produces a shot opportunity the player with the ball must decide whether the shot is worth taking. In this paper, I explore the question of when a team should shoot and when they should pass up the shot by considering a simple theoretical model of the shot selection process, in which the quality of shot opportunities generated by the offense is assumed to fall randomly within a uniform distribution. I derive an answer to the question "how likely must the shot be to go in before the player should take it?", and show that this "lower cutoff" for shot quality ff depends crucially on the number nn of shot opportunities remaining (say, before the shot clock expires), with larger nn demanding that only higher-quality shots should be taken. The function f(n)f(n) is also derived in the presence of a finite turnover rate and used to predict the shooting rate of an optimal-shooting team as a function of time. This prediction is compared to observed shooting rates from the National Basketball Association (NBA), and the comparison suggests that NBA players tend to wait too long before shooting and undervalue the probability of committing a turnover.Comment: 7 pages, 2 figures; comparison to NBA data adde

    An Analytical Study of Coupled Two-State Stochastic Resonators

    Full text link
    The two-state model of stochastic resonance is extended to a chain of coupled two-state elements governed by the dynamics of Glauber's stochastic Ising model. Appropriate assumptions on the model parameters turn the chain into a prototype system of coupled stochastic resonators. In a weak-signal limit analytical expressions are derived for the spectral power amplification and the signal-to-noise ratio of a two-state element embedded into the chain. The effect of the coupling between the elements on both quantities is analysed and array-enhanced stochastic resonance is established for pure as well as noisy periodic signals. The coupling-induced improvement of the SNR compared to an uncoupled element is shown to be limited by a factor four which is only reached for vanishing input noise.Comment: 29 pages, 5 figure

    System size resonance in coupled noisy systems and in the Ising model

    Get PDF
    We consider an ensemble of coupled nonlinear noisy oscillators demonstrating in the thermodynamic limit an Ising-type transition. In the ordered phase and for finite ensembles stochastic flips of the mean field are observed with the rate depending on the ensemble size. When a small periodic force acts on the ensemble, the linear response of the system has a maximum at a certain system size, similar to the stochastic resonance phenomenon. We demonstrate this effect of system size resonance for different types of noisy oscillators and for different ensembles -- lattices with nearest neighbors coupling and globally coupled populations. The Ising model is also shown to demonstrate the system size resonance.Comment: 4 page

    Asymptotically stable phase synchronization revealed by autoregressive circle maps

    Full text link
    A new type of nonlinear time series analysis is introduced, based on phases, which are defined as polar angles in spaces spanned by a finite number of delayed coordinates. A canonical choice of the polar axis and a related implicit estimation scheme for the potentially underlying auto-regressive circle map (next phase map) guarantee the invertibility of reconstructed phase space trajectories to the original coordinates. The resulting Fourier approximated, Invertibility enforcing Phase Space map (FIPS map) is well suited to detect conditional asymptotic stability of coupled phases. This rather general synchronization criterion unites two existing generalisations of the old concept and can successfully be applied e.g. to phases obtained from ECG and airflow recordings characterizing cardio-respiratory interaction.Comment: PDF file, 232 KB, 24 pages, 3 figures; cheduled for Phys. Rev. E (Nov) 200

    Model of C-Axis Resistivity of High-\Tc Cuprates

    Full text link
    We propose a simple model which accounts for the major features and systematics of experiments on the cc-axis resistivity, ρc\rho_c, for \lsco, \ybco and \bsco . We argue that the cc-axis resistivity can be separated into contributions from in-plane dephasing and the cc-axis ``barrier'' scattering processes, with the low temperature semiconductor-like behavior of ρc\rho_c arising from the suppression of the in-plane density of states measured by in-plane magnetic Knight shift experiments. We report on predictions for ρc\rho_c in impurity-doped \ybco materials.Comment: 10 pages + figures, also see March Meeting J13.1

    Stochastic Resonance in Ion Channels Characterized by Information Theory

    Full text link
    We identify a unifying measure for stochastic resonance (SR) in voltage dependent ion channels which comprises periodic (conventional), aperiodic and nonstationary SR. Within a simplest setting, the gating dynamics is governed by two-state conductance fluctuations, which switch at random time points between two values. The corresponding continuous time point process is analyzed by virtue of information theory. In pursuing this goal we evaluate for our dynamics the tau-information, the mutual information and the rate of information gain. As a main result we find an analytical formula for the rate of information gain that solely involves the probability of the two channel states and their noise averaged rates. For small voltage signals it simplifies to a handy expression. Our findings are applied to study SR in a potassium channel. We find that SR occurs only when the closed state is predominantly dwelled. Upon increasing the probability for the open channel state the application of an extra dose of noise monotonically deteriorates the rate of information gain, i.e., no SR behavior occurs.Comment: 10 pages, 2 figures, to appear in Phys. Rev.
    corecore