9 research outputs found

    American Mastodon Mitochondrial Genomes Suggest Multiple Dispersal Events in Response to Pleistocene Climate Oscillations

    Get PDF
    Pleistocene glacial-interglacial cycles are correlated with dramatic temperature oscillations. Examining how species responded to these natural fluctuations can provide valuable insights into the impacts of present-day anthropogenic climate change. Here we present a phylogeographic study of the extinct American mastodon (Mammut americanum), based on 35 complete mitochondrial genomes. These data reveal the presence of multiple lineages within this species, including two distinct clades from eastern Beringia. Our molecular date estimates suggest that these clades arose at different times, supporting a pattern of repeated northern expansion and local extirpation in response to glacial cycling. Consistent with this hypothesis, we also note lower levels of genetic diversity among northern mastodons than in endemic clades south of the continental ice sheets. The results of our study highlight the complex relationships between population dispersals and climate change, and can provide testable hypotheses for extant species expected to experience substantial biogeographic impacts from rising temperatures

    FAIR in action: Brain-CODE - A neuroscience data sharing platform to accelerate brain research

    Get PDF
    The effective sharing of health research data within the healthcare ecosystem can have tremendous impact on the advancement of disease understanding, prevention, treatment, and monitoring. By combining and reusing health research data, increasingly rich insights can be made about patients and populations that feed back into the health system resulting in more effective best practices and better patient outcomes. To achieve the promise of a learning health system, data needs to meet the FAIR principles of findability, accessibility, interoperability, and reusability. Since the inception of the Brain-CODE platform and services in 2012, the Ontario Brain Institute (OBI) has pioneered data sharing activities aligned with FAIR principles in neuroscience. Here, we describe how Brain-CODE has operationalized data sharing according to the FAIR principles. Findable—Brain-CODE offers an interactive and itemized approach for requesters to generate data cuts of interest that align with their research questions. Accessible—Brain-CODE offers multiple data access mechanisms. These mechanisms—that distinguish between metadata access, data access within a secure computing environment on Brain-CODE and data access via export will be discussed. Interoperable—Standardization happens at the data capture level and the data release stage to allow integration with similar data elements. Reusable - Brain-CODE implements several quality assurances measures and controls to maximize data value for reusability. We will highlight the successes and challenges of a FAIR-focused neuroinformatics platform that facilitates the widespread collection and sharing of neuroscience research data for learning health systems

    American mastodon mitochondrial genomes suggest multiple dispersal events in response to Pleistocene climate oscillations

    Get PDF
    Pleistocene population dynamics can inform the consequences of current climate change. This phylogeography of 35 complete American mastodon mitochondrial genomes suggests distinct lineages in this species repeatedly expanded northwards and then went locally extinct in response to glacial cycles

    Brain-CODE: A Secure Neuroinformatics Platform for Management, Federation, Sharing and Analysis of Multi-Dimensional Neuroscience Data

    No full text
    Historically, research databases have existed in isolation with no practical avenue for sharing or pooling medical data into high dimensional datasets that can be efficiently compared across databases. To address this challenge, the Ontario Brain Institute’s “Brain-CODE” is a large-scale neuroinformatics platform designed to support the collection, storage, federation, sharing and analysis of different data types across several brain disorders, as a means to understand common underlying causes of brain dysfunction and develop novel approaches to treatment. By providing researchers access to aggregated datasets that they otherwise could not obtain independently, Brain-CODE incentivizes data sharing and collaboration and facilitates analyses both within and across disorders and across a wide array of data types, including clinical, neuroimaging and molecular. The Brain-CODE system architecture provides the technical capabilities to support (1) consolidated data management to securely capture, monitor and curate data, (2) privacy and security best-practices, and (3) interoperable and extensible systems that support harmonization, integration, and query across diverse data modalities and linkages to external data sources. Brain-CODE currently supports collaborative research networks focused on various brain conditions, including neurodevelopmental disorders, cerebral palsy, neurodegenerative diseases, epilepsy and mood disorders. These programs are generating large volumes of data that are integrated within Brain-CODE to support scientific inquiry and analytics across multiple brain disorders and modalities. By providing access to very large datasets on patients with different brain disorders and enabling linkages to provincial, national and international databases, Brain-CODE will help to generate new hypotheses about the biological bases of brain disorders, and ultimately promote new discoveries to improve patient care

    Becoming an industry: The struggle of social and community workers for award coverage, 1976-2001

    No full text
    Until the 1990s, most workers employed by non-government community services organizations were excluded from the most basic right of Australian industrial citizenship' ” award coverage. Expected to be a formality by the newly-formed Australian Social Welfare Union, establishing an award for the non-profit social and community services sector became a grinding struggle at both federal and state levels against the resistance of both Liberal-National coalition and Labor party governments, the major charities and other unions stretching from the 1970s through the 1990s. Our explanation of why the struggle for industrial recognition was so long and hard emphasizes the lack of social recognition for care work and contradictions among care workers between their roles as professionals, caring for others, and unionists ” factors that led to internal, institutional, strategic and cultural resistance to an award for the social and community services workers
    corecore