134 research outputs found

    On the divine clockwork: the spectral gap for the correspondence limit of the Nelson diffusion generator for the atomic elliptic state

    Full text link
    The correspondence limit of the atomic elliptic state in three dimensions is discussed in terms of Nelson's stochastic mechanics. In previous work we have shown that this approach leads to a limiting Nelson diffusion and here we discuss in detail the invariant measure for this process and show that it is concentrated on the Kepler ellipse in the plane z=0. We then show that the limiting Nelson diffusion generator has a spectral gap; thereby proving that in the infinite time limit the density for the limiting Nelson diffusion will converge to its invariant measure. We also include a summary of the Cheeger and Poincare inequalities both of which are used in our proof of the existence of the spectral gap.Comment: 30 pages, 5 figures, submitted to J. Math. Phy

    The Existence of Einstein Static Universes and their Stability in Fourth order Theories of Gravity

    Full text link
    We investigate whether or not an Einstein Static universe is a solution to the cosmological equations in f(R)f(R) gravity. It is found that only one class of f(R)f(R) theories admits an Einstein Static model, and that this class is neutrally stable with respect to vector and tensor perturbations for all equations of state on all scales. Scalar perturbations are only stable on all scales if the matter fluid equation of state satisfies cs2>5−16≈0.21c_s^2>\frac{\sqrt{5}-1}{6}\approx 0.21. This result is remarkably similar to the GR case, where it was found that the Einstein Static model is stable for cs2>1/5c_s^2>{1/5}.Comment: Minor changes, To appear in PR

    The evolution of density perturbations in f(R) gravity

    Full text link
    We give a rigorous and mathematically well defined presentation of the Covariant and Gauge Invariant theory of scalar perturbations of a Friedmann-Lemaitre-Robertson-Walker universe for Fourth Order Gravity, where the matter is described by a perfect fluid with a barotropic equation of state. The general perturbations equations are applied to a simple background solution of R^n gravity. We obtain exact solutions of the perturbations equations for scales much bigger than the Hubble radius. These solutions have a number of interesting features. In particular, we find that for all values of n there is always a growing mode for the density contrast, even if the universe undergoes an accelerated expansion. Such a behaviour does not occur in standard General Relativity, where as soon as Dark Energy dominates, the density contrast experiences an unrelenting decay. This peculiarity is sufficiently novel to warrant further investigation on fourth order gravity models.Comment: 21 pages, 2 figures, typos corrected, submitted to PR

    Perturbative Thermodynamics of Lattice QCD with Chiral-Invariant Four-Fermion Interactions

    Get PDF
    Lattice QCD with additional chiral-invariant four-fermion interactions is studied at nonzero temperature. Staggered Kogut-Susskind quarks are used. The four-fermion interactions are implemented by introducing bosonic auxiliary fields. A mean field treatment of the auxiliary fields is used to calculate the model's asymptotic scale parameter and perturbative thermodynamics, including the one-loop gluonic contributions to the energy, entropy, and pressure. In this approach the calculations reduce to those of ordinary lattice QCD with massive quarks. Hence, the previous calculations of these quantities in lattice QCD using massless quarks are generalized to the massive case.Comment: 22 pages, RevTeX, 8 EPS figures, uses epsf.sty and feynmf.st

    Evolution of the discrepancy between a universe and its model

    Get PDF
    We study a fundamental issue in cosmology: Whether we can rely on a cosmological model to understand the real history of the Universe. This fundamental, still unresolved issue is often called the ``model-fitting problem (or averaging problem) in cosmology''. Here we analyze this issue with the help of the spectral scheme prepared in the preceding studies. Choosing two specific spatial geometries that are very close to each other, we investigate explicitly the time evolution of the spectral distance between them; as two spatial geometries, we choose a flat 3-torus and a perturbed geometry around it, mimicking the relation of a ``model universe'' and the ``real Universe''. Then we estimate the spectral distance between them and investigate its time evolution explicitly. This analysis is done efficiently by making use of the basic results of the standard linear structure-formation theory. We observe that, as far as the linear perturbation of geometry is valid, the spectral distance does not increase with time prominently,rather it shows the tendency to decrease. This result is compatible with the general belief in the reliability of describing the Universe by means of a model, and calls for more detailed studies along the same line including the investigation of wider class of spacetimes and the analysis beyond the linear regime.Comment: To be published in Classical and Quantum Gravit

    Maximizing Neumann fundamental tones of triangles

    Full text link
    We prove sharp isoperimetric inequalities for Neumann eigenvalues of the Laplacian on triangular domains. The first nonzero Neumann eigenvalue is shown to be maximal for the equilateral triangle among all triangles of given perimeter, and hence among all triangles of given area. Similar results are proved for the harmonic and arithmetic means of the first two nonzero eigenvalues

    Optical metrology for immersed diffractive multifocal ophthalmic intracorneal lenses

    Get PDF
    This paper deals with the optical characterization of diffractive multifocal Intra-Corneal Lenses (ICLs) that we have developed in order to correct presbyopia. These diffractive multifocal lenses are made of a very soft material (permeable to oxygen and nutrients), with a thickness smaller than 100 µm and require liquid immersion. As a consequence, most of the conventional metrology methods are unsuited for their characterization. We developed specific setups to measure diffractive efficiencies and Modulation Transfer Function (MTF) adapted to such components. Experimental results are in good agreement with Zemax® simulations. For the best of our knowledge, it is the first time that optical characterization is devoted to the ICLs. Furthermore, most of the IOL’s optical characterizations are focused on far vision MTF and don’t assess the near vision MTF, which we study in this paper

    Point Interaction in two and three dimensional Riemannian Manifolds

    Full text link
    We present a non-perturbative renormalization of the bound state problem of n bosons interacting with finitely many Dirac delta interactions on two and three dimensional Riemannian manifolds using the heat kernel. We formulate the problem in terms of a new operator called the principal or characteristic operator. In order to investigate the problem in more detail, we then restrict the problem to one particle sector. The lower bound of the ground state energy is found for general class of manifolds, e.g., for compact and Cartan-Hadamard manifolds. The estimate of the bound state energies in the tunneling regime is calculated by perturbation theory. Non-degeneracy and uniqueness of the ground state is proven by Perron-Frobenius theorem. Moreover, the pointwise bounds on the wave function is given and all these results are consistent with the one given in standard quantum mechanics. Renormalization procedure does not lead to any radical change in these cases. Finally, renormalization group equations are derived and the beta-function is exactly calculated. This work is a natural continuation of our previous work based on a novel approach to the renormalization of point interactions, developed by S. G. Rajeev.Comment: 43 page

    The evolution of cosmological gravitational waves in f(R) gravity

    Full text link
    We give a rigorous and mathematically clear presentation of the Covariant and Gauge Invariant theory of gravitational waves in a perturbed Friedmann-Lemaitre-Robertson-Walker universe for Fourth Order Gravity, where the matter is described by a perfect fluid with a barotropic equation of state. As an example of a consistent analysis of tensor perturbations in Fourth Order Gravity, we apply the formalism to a simple background solution of R^n gravity. We obtain the exact solutions of the perturbation equations for scales much bigger than and smaller than the Hubble radius. It is shown that the evolution of tensor modes is highly sensitive to the choice of n and an interesting new feature arises. During the radiation dominated era, their exist a growing tensor perturbation for nearly all choices of n. This occurs even when the background model is undergoing accelerated expansion as opposed to the case of General Relativity. Consequently, cosmological gravitational wave modes can in principle provide a strong constraint on the theory of gravity independent of other cosmological data sets.Comment: 19 pages, 4 figures; v2: corrected to match version accepted for publication in PR

    On the minimization of Dirichlet eigenvalues of the Laplace operator

    Full text link
    We study the variational problem \inf \{\lambda_k(\Omega): \Omega\ \textup{open in}\ \R^m,\ |\Omega| < \infty, \ \h(\partial \Omega) \le 1 \}, where λk(Ω)\lambda_k(\Omega) is the kk'th eigenvalue of the Dirichlet Laplacian acting in L2(Ω)L^2(\Omega), \h(\partial \Omega) is the (m−1)(m-1)- dimensional Hausdorff measure of the boundary of Ω\Omega, and ∣Ω∣|\Omega| is the Lebesgue measure of Ω\Omega. If m=2m=2, and k=2,3,⋯k=2,3, \cdots, then there exists a convex minimiser Ω2,k\Omega_{2,k}. If m≥2m \ge 2, and if Ωm,k\Omega_{m,k} is a minimiser, then Ωm,k∗:=int(Ωm,k‾)\Omega_{m,k}^*:= \textup{int}(\overline{\Omega_{m,k}}) is also a minimiser, and Rm∖Ωm,k∗\R^m\setminus \Omega_{m,k}^* is connected. Upper bounds are obtained for the number of components of Ωm,k\Omega_{m,k}. It is shown that if m≥3m\ge 3, and k≤m+1k\le m+1 then Ωm,k\Omega_{m,k} has at most 44 components. Furthermore Ωm,k\Omega_{m,k} is connected in the following cases : (i) m≥2,k=2,m\ge 2, k=2, (ii) m=3,4,5,m=3,4,5, and k=3,4,k=3,4, (iii) m=4,5,m=4,5, and k=5,k=5, (iv) m=5m=5 and k=6k=6. Finally, upper bounds on the number of components are obtained for minimisers for other constraints such as the Lebesgue measure and the torsional rigidity.Comment: 16 page
    • …
    corecore