207 research outputs found

    Dissipative Effects in the Electronic Transport through DNA Molecular Wires

    Get PDF
    We investigate the influence of a dissipative environment which effectively comprises the effects of counterions and hydration shells, on the transport properties of short \DNA wires. Their electronic structure is captured by a tight-binding model which is embedded in a bath consisting of a collection of harmonic oscillators. Without coupling to the bath a temperature independent gap opens in the electronic spectrum. Upon allowing for electron-bath interaction the gap becomes temperature dependent. It increases with temperature in the weak-coupling limit to the bath degrees of freedom. In the strong-coupling regime a bath-induced {\it pseudo-gap} is formed. As a result, a crossover from tunneling to activated behavior in the low-voltage region of the II-VV characteristics is observed with increasing temperature. The temperature dependence of the transmission near the Fermi energy, t(EF)t(E_{\rm F}), manifests an Arrhenius-like behavior in agreement with recent transport experiments. Moreover, t(EF)t(E_{\rm F}) shows a weak exponential dependence on the wire length, typical of strong incoherent transport. Disorder effects smear the electronic bands, but do not appreciably affect the pseudo-gap formation

    Overcoming the Exciton Binding Energy in Two-Dimensional Perovskite Nanoplatelets by Attachment of Conjugated Organic Chromophores

    Get PDF
    In this work we demonstrate a novel approach to achieve efficient charge separation in dimensionally and dielectrically confined two-dimensional perovskite materials. Two-dimensional perovskites generally exhibit large exciton binding energies that limit their application in optoelectronic devices that require charge separation such as solar cells, photo-detectors and in photo-catalysis. Here, we show that by incorporating a strongly electron accepting moiety, perylene diimide organic chromophores, on the surface of the two-dimensional perovskite nanoplatelets it is possible to achieve efficient formation of mobile free charge carriers. These free charge carriers are generated with ten times higher yield and lifetimes of tens of microseconds, which is two orders of magnitude longer than without the peryline diimide acceptor. This opens a novel synergistic approach, where the inorganic perovskite layers are combined with functional organic chromophores in the same material to tune the properties for specific applications. Functionalizing two-dimensional (2D) hybrid perovskites with organic chromophores is a novel approach to tune their optoelectronic properties. Here, the authors report efficient charge separation and conduction in 2D hybrid perovskite nanoplatelets by incorporating an electron acceptor chromophoreThis work has received funding from the European Research Council Horizon 2020 ERC Grant Agreement No. 648433

    Tuning of the excited state properties of phenylenevinylene oligomers:A time-dependent density functional theory study

    Get PDF
    This paper discusses a time-dependent density functional theory study of the effect of molecular structure on the excited state polarizability of conjugated molecules. A short phenylenevinylene oligomer containing three phenyl rings (PV2, distyryl benzene) is taken as a model system. Introduction of methyl substituents is shown to have only a small influence on the increase in polarizability upon excitation (the excess polarizability, Delta(alpha) over bar). Methoxy groups have a much larger effect but in this case Delta(alpha) over bar depends strongly on the dihedral angle between the side chain and the backbone of the molecule. If the central phenyl ring of PV2 has a meta-configuration rather than para, both the optical absorption spectrum and the excess polarizability change considerably. (C) 2003 American Institute of Physics

    Tight-binding parameters for charge transfer along DNA

    Full text link
    We systematically examine all the tight-binding parameters pertinent to charge transfer along DNA. The π\pi molecular structure of the four DNA bases (adenine, thymine, cytosine, and guanine) is investigated by using the linear combination of atomic orbitals method with a recently introduced parametrization. The HOMO and LUMO wavefunctions and energies of DNA bases are discussed and then used for calculating the corresponding wavefunctions of the two B-DNA base-pairs (adenine-thymine and guanine-cytosine). The obtained HOMO and LUMO energies of the bases are in good agreement with available experimental values. Our results are then used for estimating the complete set of charge transfer parameters between neighboring bases and also between successive base-pairs, considering all possible combinations between them, for both electrons and holes. The calculated microscopic quantities can be used in mesoscopic theoretical models of electron or hole transfer along the DNA double helix, as they provide the necessary parameters for a tight-binding phenomenological description based on the π\pi molecular overlap. We find that usually the hopping parameters for holes are higher in magnitude compared to the ones for electrons, which probably indicates that hole transport along DNA is more favorable than electron transport. Our findings are also compared with existing calculations from first principles.Comment: 15 pages, 3 figures, 7 table

    Long-range corrected DFT calculations of charge-transfer integrals in model metal-free phthalocyanine complexes

    Get PDF
    An assessment of several widely used exchange--correlation potentials in computing charge-transfer integrals is performed. In particular, we employ the recently proposed Coulomb-attenuated model which was proven by other authors to improve upon conventional functionals in the case of charge-transfer excitations. For further validation, two distinct approaches to compute the property in question are compared for a phthalocyanine dimer

    DNA Charge Transport: Conformationally Gated Hopping through Stacked Domains

    Full text link
    • …
    corecore